A hydrometeorological approach for probabilistic flood forecast

We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. Atmospheres 2005-03, Vol.110 (D5), p.D05101.1-n/a
Hauptverfasser: Siccardi, F., Boni, G., Ferraris, L., Rudari, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D5
container_start_page D05101.1
container_title Journal of Geophysical Research. D. Atmospheres
container_volume 110
creator Siccardi, F.
Boni, G.
Ferraris, L.
Rudari, R.
description We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, and hydrological modeling in order to provide a probabilistic prediction of ground effects of heavy rainfall events. Different ways of nesting are defined as function of the ratio between three typical scales: scales at which rainfall processes are satisfactory represented by meteorological models, scales of the hydrological processes, and scales of the social response. Two different examples of the application of the methodology for different hydrological scales are presented. Predictive CDFs are evaluated, and the motivations that lead to a different paths for CDFs derivation are highlighted.
doi_str_mv 10.1029/2004JD005314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28517904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28517904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4472-ee4993cc4e3cc5ddc6de8254f22757841e93585b1c235774ea8b702b0c687893</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouKg3f0AverI6-U5PsnR1_WIFWfAY0jTVatesSUX33xvpop50DjPD8Lwvw4vQPoZjDKQ4IQDsagLAKWYbaEQwFzkhQDbRCDBTORAit9FejE-QinHBAI_Q6Th7XNXBL1zvfPCdf2it6TKzXAZv7GPW-JCltTJV27Wxb23WdN7XX3dnTex30VZjuuj21nMHzc_P5uVFfnM7vSzHN7llTJLcOVYU1FrmUuN1bUXtFOGsSU9xqRh2BeWKV9gSyqVkzqhKAqnACiVVQXfQ4WCbfnl9c7HXizZa13Xmxfm3qIniWBbA_gWxpEQIThN4NIA2-BiDa_QytAsTVhqD_gpU_w404QdrXxNTQE0wL7aNPxohFQaGE0cH7r3t3OpPT301vZtgLBVJqnxQpYjdx7fKhGctJJVc38-mmkJ5Xc6u51rQTzYJkV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17326653</pqid></control><display><type>article</type><title>A hydrometeorological approach for probabilistic flood forecast</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><source>Alma/SFX Local Collection</source><creator>Siccardi, F. ; Boni, G. ; Ferraris, L. ; Rudari, R.</creator><creatorcontrib>Siccardi, F. ; Boni, G. ; Ferraris, L. ; Rudari, R.</creatorcontrib><description>We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, and hydrological modeling in order to provide a probabilistic prediction of ground effects of heavy rainfall events. Different ways of nesting are defined as function of the ratio between three typical scales: scales at which rainfall processes are satisfactory represented by meteorological models, scales of the hydrological processes, and scales of the social response. Two different examples of the application of the methodology for different hydrological scales are presented. Predictive CDFs are evaluated, and the motivations that lead to a different paths for CDFs derivation are highlighted.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2004JD005314</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>decision making under uncertainty ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; flood forecast ; Freshwater ; probabilistic chain</subject><ispartof>Journal of Geophysical Research. D. Atmospheres, 2005-03, Vol.110 (D5), p.D05101.1-n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4472-ee4993cc4e3cc5ddc6de8254f22757841e93585b1c235774ea8b702b0c687893</citedby><cites>FETCH-LOGICAL-c4472-ee4993cc4e3cc5ddc6de8254f22757841e93585b1c235774ea8b702b0c687893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2004JD005314$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2004JD005314$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16781041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Siccardi, F.</creatorcontrib><creatorcontrib>Boni, G.</creatorcontrib><creatorcontrib>Ferraris, L.</creatorcontrib><creatorcontrib>Rudari, R.</creatorcontrib><title>A hydrometeorological approach for probabilistic flood forecast</title><title>Journal of Geophysical Research. D. Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, and hydrological modeling in order to provide a probabilistic prediction of ground effects of heavy rainfall events. Different ways of nesting are defined as function of the ratio between three typical scales: scales at which rainfall processes are satisfactory represented by meteorological models, scales of the hydrological processes, and scales of the social response. Two different examples of the application of the methodology for different hydrological scales are presented. Predictive CDFs are evaluated, and the motivations that lead to a different paths for CDFs derivation are highlighted.</description><subject>decision making under uncertainty</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>flood forecast</subject><subject>Freshwater</subject><subject>probabilistic chain</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouKg3f0AverI6-U5PsnR1_WIFWfAY0jTVatesSUX33xvpop50DjPD8Lwvw4vQPoZjDKQ4IQDsagLAKWYbaEQwFzkhQDbRCDBTORAit9FejE-QinHBAI_Q6Th7XNXBL1zvfPCdf2it6TKzXAZv7GPW-JCltTJV27Wxb23WdN7XX3dnTex30VZjuuj21nMHzc_P5uVFfnM7vSzHN7llTJLcOVYU1FrmUuN1bUXtFOGsSU9xqRh2BeWKV9gSyqVkzqhKAqnACiVVQXfQ4WCbfnl9c7HXizZa13Xmxfm3qIniWBbA_gWxpEQIThN4NIA2-BiDa_QytAsTVhqD_gpU_w404QdrXxNTQE0wL7aNPxohFQaGE0cH7r3t3OpPT301vZtgLBVJqnxQpYjdx7fKhGctJJVc38-mmkJ5Xc6u51rQTzYJkV4</recordid><startdate>20050316</startdate><enddate>20050316</enddate><creator>Siccardi, F.</creator><creator>Boni, G.</creator><creator>Ferraris, L.</creator><creator>Rudari, R.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050316</creationdate><title>A hydrometeorological approach for probabilistic flood forecast</title><author>Siccardi, F. ; Boni, G. ; Ferraris, L. ; Rudari, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4472-ee4993cc4e3cc5ddc6de8254f22757841e93585b1c235774ea8b702b0c687893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>decision making under uncertainty</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>flood forecast</topic><topic>Freshwater</topic><topic>probabilistic chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siccardi, F.</creatorcontrib><creatorcontrib>Boni, G.</creatorcontrib><creatorcontrib>Ferraris, L.</creatorcontrib><creatorcontrib>Rudari, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siccardi, F.</au><au>Boni, G.</au><au>Ferraris, L.</au><au>Rudari, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hydrometeorological approach for probabilistic flood forecast</atitle><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2005-03-16</date><risdate>2005</risdate><volume>110</volume><issue>D5</issue><spage>D05101.1</spage><epage>n/a</epage><pages>D05101.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, and hydrological modeling in order to provide a probabilistic prediction of ground effects of heavy rainfall events. Different ways of nesting are defined as function of the ratio between three typical scales: scales at which rainfall processes are satisfactory represented by meteorological models, scales of the hydrological processes, and scales of the social response. Two different examples of the application of the methodology for different hydrological scales are presented. Predictive CDFs are evaluated, and the motivations that lead to a different paths for CDFs derivation are highlighted.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2004JD005314</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. D. Atmospheres, 2005-03, Vol.110 (D5), p.D05101.1-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_28517904
source Wiley Online Library - AutoHoldings Journals; Wiley Online Library Free Content; Wiley Online Library AGU Free Content; Alma/SFX Local Collection
subjects decision making under uncertainty
Earth sciences
Earth, ocean, space
Exact sciences and technology
flood forecast
Freshwater
probabilistic chain
title A hydrometeorological approach for probabilistic flood forecast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hydrometeorological%20approach%20for%20probabilistic%20flood%20forecast&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20Atmospheres&rft.au=Siccardi,%20F.&rft.date=2005-03-16&rft.volume=110&rft.issue=D5&rft.spage=D05101.1&rft.epage=n/a&rft.pages=D05101.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2004JD005314&rft_dat=%3Cproquest_cross%3E28517904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17326653&rft_id=info:pmid/&rfr_iscdi=true