A hydrometeorological approach for probabilistic flood forecast
We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, an...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research. D. Atmospheres 2005-03, Vol.110 (D5), p.D05101.1-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D5 |
container_start_page | D05101.1 |
container_title | Journal of Geophysical Research. D. Atmospheres |
container_volume | 110 |
creator | Siccardi, F. Boni, G. Ferraris, L. Rudari, R. |
description | We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, and hydrological modeling in order to provide a probabilistic prediction of ground effects of heavy rainfall events. Different ways of nesting are defined as function of the ratio between three typical scales: scales at which rainfall processes are satisfactory represented by meteorological models, scales of the hydrological processes, and scales of the social response. Two different examples of the application of the methodology for different hydrological scales are presented. Predictive CDFs are evaluated, and the motivations that lead to a different paths for CDFs derivation are highlighted. |
doi_str_mv | 10.1029/2004JD005314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28517904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28517904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4472-ee4993cc4e3cc5ddc6de8254f22757841e93585b1c235774ea8b702b0c687893</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouKg3f0AverI6-U5PsnR1_WIFWfAY0jTVatesSUX33xvpop50DjPD8Lwvw4vQPoZjDKQ4IQDsagLAKWYbaEQwFzkhQDbRCDBTORAit9FejE-QinHBAI_Q6Th7XNXBL1zvfPCdf2it6TKzXAZv7GPW-JCltTJV27Wxb23WdN7XX3dnTex30VZjuuj21nMHzc_P5uVFfnM7vSzHN7llTJLcOVYU1FrmUuN1bUXtFOGsSU9xqRh2BeWKV9gSyqVkzqhKAqnACiVVQXfQ4WCbfnl9c7HXizZa13Xmxfm3qIniWBbA_gWxpEQIThN4NIA2-BiDa_QytAsTVhqD_gpU_w404QdrXxNTQE0wL7aNPxohFQaGE0cH7r3t3OpPT301vZtgLBVJqnxQpYjdx7fKhGctJJVc38-mmkJ5Xc6u51rQTzYJkV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17326653</pqid></control><display><type>article</type><title>A hydrometeorological approach for probabilistic flood forecast</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><source>Alma/SFX Local Collection</source><creator>Siccardi, F. ; Boni, G. ; Ferraris, L. ; Rudari, R.</creator><creatorcontrib>Siccardi, F. ; Boni, G. ; Ferraris, L. ; Rudari, R.</creatorcontrib><description>We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, and hydrological modeling in order to provide a probabilistic prediction of ground effects of heavy rainfall events. Different ways of nesting are defined as function of the ratio between three typical scales: scales at which rainfall processes are satisfactory represented by meteorological models, scales of the hydrological processes, and scales of the social response. Two different examples of the application of the methodology for different hydrological scales are presented. Predictive CDFs are evaluated, and the motivations that lead to a different paths for CDFs derivation are highlighted.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2004JD005314</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>decision making under uncertainty ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; flood forecast ; Freshwater ; probabilistic chain</subject><ispartof>Journal of Geophysical Research. D. Atmospheres, 2005-03, Vol.110 (D5), p.D05101.1-n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4472-ee4993cc4e3cc5ddc6de8254f22757841e93585b1c235774ea8b702b0c687893</citedby><cites>FETCH-LOGICAL-c4472-ee4993cc4e3cc5ddc6de8254f22757841e93585b1c235774ea8b702b0c687893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2004JD005314$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2004JD005314$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16781041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Siccardi, F.</creatorcontrib><creatorcontrib>Boni, G.</creatorcontrib><creatorcontrib>Ferraris, L.</creatorcontrib><creatorcontrib>Rudari, R.</creatorcontrib><title>A hydrometeorological approach for probabilistic flood forecast</title><title>Journal of Geophysical Research. D. Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, and hydrological modeling in order to provide a probabilistic prediction of ground effects of heavy rainfall events. Different ways of nesting are defined as function of the ratio between three typical scales: scales at which rainfall processes are satisfactory represented by meteorological models, scales of the hydrological processes, and scales of the social response. Two different examples of the application of the methodology for different hydrological scales are presented. Predictive CDFs are evaluated, and the motivations that lead to a different paths for CDFs derivation are highlighted.</description><subject>decision making under uncertainty</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>flood forecast</subject><subject>Freshwater</subject><subject>probabilistic chain</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouKg3f0AverI6-U5PsnR1_WIFWfAY0jTVatesSUX33xvpop50DjPD8Lwvw4vQPoZjDKQ4IQDsagLAKWYbaEQwFzkhQDbRCDBTORAit9FejE-QinHBAI_Q6Th7XNXBL1zvfPCdf2it6TKzXAZv7GPW-JCltTJV27Wxb23WdN7XX3dnTex30VZjuuj21nMHzc_P5uVFfnM7vSzHN7llTJLcOVYU1FrmUuN1bUXtFOGsSU9xqRh2BeWKV9gSyqVkzqhKAqnACiVVQXfQ4WCbfnl9c7HXizZa13Xmxfm3qIniWBbA_gWxpEQIThN4NIA2-BiDa_QytAsTVhqD_gpU_w404QdrXxNTQE0wL7aNPxohFQaGE0cH7r3t3OpPT301vZtgLBVJqnxQpYjdx7fKhGctJJVc38-mmkJ5Xc6u51rQTzYJkV4</recordid><startdate>20050316</startdate><enddate>20050316</enddate><creator>Siccardi, F.</creator><creator>Boni, G.</creator><creator>Ferraris, L.</creator><creator>Rudari, R.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050316</creationdate><title>A hydrometeorological approach for probabilistic flood forecast</title><author>Siccardi, F. ; Boni, G. ; Ferraris, L. ; Rudari, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4472-ee4993cc4e3cc5ddc6de8254f22757841e93585b1c235774ea8b702b0c687893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>decision making under uncertainty</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>flood forecast</topic><topic>Freshwater</topic><topic>probabilistic chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siccardi, F.</creatorcontrib><creatorcontrib>Boni, G.</creatorcontrib><creatorcontrib>Ferraris, L.</creatorcontrib><creatorcontrib>Rudari, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siccardi, F.</au><au>Boni, G.</au><au>Ferraris, L.</au><au>Rudari, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hydrometeorological approach for probabilistic flood forecast</atitle><jtitle>Journal of Geophysical Research. D. Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2005-03-16</date><risdate>2005</risdate><volume>110</volume><issue>D5</issue><spage>D05101.1</spage><epage>n/a</epage><pages>D05101.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>We propose a new methodology for evaluating predictive cumulative distribution functions (CDF) of ground effects for flood forecasting in mountainous environments. The methodology is based on the proper nesting of models suitable for probabilistic meteorological forecast, downscaling of rainfall, and hydrological modeling in order to provide a probabilistic prediction of ground effects of heavy rainfall events. Different ways of nesting are defined as function of the ratio between three typical scales: scales at which rainfall processes are satisfactory represented by meteorological models, scales of the hydrological processes, and scales of the social response. Two different examples of the application of the methodology for different hydrological scales are presented. Predictive CDFs are evaluated, and the motivations that lead to a different paths for CDFs derivation are highlighted.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2004JD005314</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research. D. Atmospheres, 2005-03, Vol.110 (D5), p.D05101.1-n/a |
issn | 0148-0227 2156-2202 |
language | eng |
recordid | cdi_proquest_miscellaneous_28517904 |
source | Wiley Online Library - AutoHoldings Journals; Wiley Online Library Free Content; Wiley Online Library AGU Free Content; Alma/SFX Local Collection |
subjects | decision making under uncertainty Earth sciences Earth, ocean, space Exact sciences and technology flood forecast Freshwater probabilistic chain |
title | A hydrometeorological approach for probabilistic flood forecast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hydrometeorological%20approach%20for%20probabilistic%20flood%20forecast&rft.jtitle=Journal%20of%20Geophysical%20Research.%20D.%20Atmospheres&rft.au=Siccardi,%20F.&rft.date=2005-03-16&rft.volume=110&rft.issue=D5&rft.spage=D05101.1&rft.epage=n/a&rft.pages=D05101.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2004JD005314&rft_dat=%3Cproquest_cross%3E28517904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17326653&rft_id=info:pmid/&rfr_iscdi=true |