New spectral methods for ratio cut partitioning and clustering

Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 1992-09, Vol.11 (9), p.1074-1085
Hauptverfasser: Hagen, L., Kahng, A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1085
container_issue 9
container_start_page 1074
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 11
creator Hagen, L.
Kahng, A.B.
description Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symmetric eigenvalue problem are a robust basis for computing heuristic ratio cuts based on the eigenvector of this second eigenvalue. Effective clustering methods are an immediate by-product of the second eigenvector computation and are very successful on the difficult input classes proposed in the CAD literature. The intersection graph representation of the circuit netlist is considered, as a basis for partitioning, a heuristic based on spectral ratio cut partitioning of the netlist intersection graph is proposed. The partitioning heuristics were tested on industry benchmark suites, and the results were good in terms of both solution quality and runtime. Several types of algorithmic speedups and directions for future work are discussed.< >
doi_str_mv 10.1109/43.159993
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28517410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>159993</ieee_id><sourcerecordid>28517410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-8f99aea66ce61218b5a2e5cbad6dd247a20f32330f6442e4e310ccca139e8b3b3</originalsourceid><addsrcrecordid>eNqNkc1LxDAQxYMouK4evHrqQQSRrpkk_chFWIqfLIqg55KmU41025qkLP73tnTRo85lGPi9N8MbQo6BLgCovBR8AZGUku-QGUiehAIi2CUzypI0pDSh--TAuQ9KQURMzsjVI24C16H2VtXBGv17W7qgam1glTdtoHsfdMp6MwyNad4C1ZSBrnvn0Q7jIdmrVO3waNvn5PXm-iW7C1dPt_fZchVqQbkP00pKhSqONcbAIC0ixTDShSrjsmQiUYxWnHFOq1gIhgI5UK21Ai4xLXjB5-Rs8u1s-9mj8_naOI11rRpse5ezNIJEAP0bjBKZiCGfOTmfQG1b5yxWeWfNWtmvHGg-RpkLnk9RDuzp1lQ5rerKqkYb9yMQHFgaj7svJmyDRVs5bbDR-EMtQUr28BxRTocaTdP_05nx4zuarO0bP0hPJqlB_JVsj_0G0G6cAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25797499</pqid></control><display><type>article</type><title>New spectral methods for ratio cut partitioning and clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Hagen, L. ; Kahng, A.B.</creator><creatorcontrib>Hagen, L. ; Kahng, A.B.</creatorcontrib><description>Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symmetric eigenvalue problem are a robust basis for computing heuristic ratio cuts based on the eigenvector of this second eigenvalue. Effective clustering methods are an immediate by-product of the second eigenvector computation and are very successful on the difficult input classes proposed in the CAD literature. The intersection graph representation of the circuit netlist is considered, as a basis for partitioning, a heuristic based on spectral ratio cut partitioning of the netlist intersection graph is proposed. The partitioning heuristics were tested on industry benchmark suites, and the results were good in terms of both solution quality and runtime. Several types of algorithmic speedups and directions for future work are discussed.&lt; &gt;</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/43.159993</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>NEW YORK: IEEE</publisher><subject>Applied sciences ; Benchmark testing ; Circuit testing ; Clustering methods ; Computer Science ; Computer Science, Hardware &amp; Architecture ; Computer Science, Interdisciplinary Applications ; Cost function ; Design. Technologies. Operation analysis. Testing ; Eigenvalues and eigenfunctions ; Electronics ; Engineering ; Engineering, Electrical &amp; Electronic ; Exact sciences and technology ; Integrated circuits ; Robustness ; Runtime ; Science &amp; Technology ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sparse matrices ; Symmetric matrices ; Technology ; Very large scale integration</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 1992-09, Vol.11 (9), p.1074-1085</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>695</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wosA1992JQ50300003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c403t-8f99aea66ce61218b5a2e5cbad6dd247a20f32330f6442e4e310ccca139e8b3b3</citedby><cites>FETCH-LOGICAL-c403t-8f99aea66ce61218b5a2e5cbad6dd247a20f32330f6442e4e310ccca139e8b3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/159993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27197,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/159993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4312860$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagen, L.</creatorcontrib><creatorcontrib>Kahng, A.B.</creatorcontrib><title>New spectral methods for ratio cut partitioning and clustering</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><addtitle>IEEE T COMPUT AID D</addtitle><description>Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symmetric eigenvalue problem are a robust basis for computing heuristic ratio cuts based on the eigenvector of this second eigenvalue. Effective clustering methods are an immediate by-product of the second eigenvector computation and are very successful on the difficult input classes proposed in the CAD literature. The intersection graph representation of the circuit netlist is considered, as a basis for partitioning, a heuristic based on spectral ratio cut partitioning of the netlist intersection graph is proposed. The partitioning heuristics were tested on industry benchmark suites, and the results were good in terms of both solution quality and runtime. Several types of algorithmic speedups and directions for future work are discussed.&lt; &gt;</description><subject>Applied sciences</subject><subject>Benchmark testing</subject><subject>Circuit testing</subject><subject>Clustering methods</subject><subject>Computer Science</subject><subject>Computer Science, Hardware &amp; Architecture</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Cost function</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electronics</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Robustness</subject><subject>Runtime</subject><subject>Science &amp; Technology</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sparse matrices</subject><subject>Symmetric matrices</subject><subject>Technology</subject><subject>Very large scale integration</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EZCTM</sourceid><recordid>eNqNkc1LxDAQxYMouK4evHrqQQSRrpkk_chFWIqfLIqg55KmU41025qkLP73tnTRo85lGPi9N8MbQo6BLgCovBR8AZGUku-QGUiehAIi2CUzypI0pDSh--TAuQ9KQURMzsjVI24C16H2VtXBGv17W7qgam1glTdtoHsfdMp6MwyNad4C1ZSBrnvn0Q7jIdmrVO3waNvn5PXm-iW7C1dPt_fZchVqQbkP00pKhSqONcbAIC0ixTDShSrjsmQiUYxWnHFOq1gIhgI5UK21Ai4xLXjB5-Rs8u1s-9mj8_naOI11rRpse5ezNIJEAP0bjBKZiCGfOTmfQG1b5yxWeWfNWtmvHGg-RpkLnk9RDuzp1lQ5rerKqkYb9yMQHFgaj7svJmyDRVs5bbDR-EMtQUr28BxRTocaTdP_05nx4zuarO0bP0hPJqlB_JVsj_0G0G6cAw</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Hagen, L.</creator><creator>Kahng, A.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>BLEPL</scope><scope>DTL</scope><scope>EZCTM</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19920901</creationdate><title>New spectral methods for ratio cut partitioning and clustering</title><author>Hagen, L. ; Kahng, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-8f99aea66ce61218b5a2e5cbad6dd247a20f32330f6442e4e310ccca139e8b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Benchmark testing</topic><topic>Circuit testing</topic><topic>Clustering methods</topic><topic>Computer Science</topic><topic>Computer Science, Hardware &amp; Architecture</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Cost function</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electronics</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Robustness</topic><topic>Runtime</topic><topic>Science &amp; Technology</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sparse matrices</topic><topic>Symmetric matrices</topic><topic>Technology</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagen, L.</creatorcontrib><creatorcontrib>Kahng, A.B.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 1992</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagen, L.</au><au>Kahng, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New spectral methods for ratio cut partitioning and clustering</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><stitle>IEEE T COMPUT AID D</stitle><date>1992-09-01</date><risdate>1992</risdate><volume>11</volume><issue>9</issue><spage>1074</spage><epage>1085</epage><pages>1074-1085</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symmetric eigenvalue problem are a robust basis for computing heuristic ratio cuts based on the eigenvector of this second eigenvalue. Effective clustering methods are an immediate by-product of the second eigenvector computation and are very successful on the difficult input classes proposed in the CAD literature. The intersection graph representation of the circuit netlist is considered, as a basis for partitioning, a heuristic based on spectral ratio cut partitioning of the netlist intersection graph is proposed. The partitioning heuristics were tested on industry benchmark suites, and the results were good in terms of both solution quality and runtime. Several types of algorithmic speedups and directions for future work are discussed.&lt; &gt;</abstract><cop>NEW YORK</cop><pub>IEEE</pub><doi>10.1109/43.159993</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 1992-09, Vol.11 (9), p.1074-1085
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_miscellaneous_28517410
source IEEE Electronic Library (IEL)
subjects Applied sciences
Benchmark testing
Circuit testing
Clustering methods
Computer Science
Computer Science, Hardware & Architecture
Computer Science, Interdisciplinary Applications
Cost function
Design. Technologies. Operation analysis. Testing
Eigenvalues and eigenfunctions
Electronics
Engineering
Engineering, Electrical & Electronic
Exact sciences and technology
Integrated circuits
Robustness
Runtime
Science & Technology
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sparse matrices
Symmetric matrices
Technology
Very large scale integration
title New spectral methods for ratio cut partitioning and clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20spectral%20methods%20for%20ratio%20cut%20partitioning%20and%20clustering&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Hagen,%20L.&rft.date=1992-09-01&rft.volume=11&rft.issue=9&rft.spage=1074&rft.epage=1085&rft.pages=1074-1085&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/43.159993&rft_dat=%3Cproquest_RIE%3E28517410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25797499&rft_id=info:pmid/&rft_ieee_id=159993&rfr_iscdi=true