New spectral methods for ratio cut partitioning and clustering
Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symme...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 1992-09, Vol.11 (9), p.1074-1085 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1085 |
---|---|
container_issue | 9 |
container_start_page | 1074 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 11 |
creator | Hagen, L. Kahng, A.B. |
description | Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symmetric eigenvalue problem are a robust basis for computing heuristic ratio cuts based on the eigenvector of this second eigenvalue. Effective clustering methods are an immediate by-product of the second eigenvector computation and are very successful on the difficult input classes proposed in the CAD literature. The intersection graph representation of the circuit netlist is considered, as a basis for partitioning, a heuristic based on spectral ratio cut partitioning of the netlist intersection graph is proposed. The partitioning heuristics were tested on industry benchmark suites, and the results were good in terms of both solution quality and runtime. Several types of algorithmic speedups and directions for future work are discussed.< > |
doi_str_mv | 10.1109/43.159993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28517410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>159993</ieee_id><sourcerecordid>28517410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-8f99aea66ce61218b5a2e5cbad6dd247a20f32330f6442e4e310ccca139e8b3b3</originalsourceid><addsrcrecordid>eNqNkc1LxDAQxYMouK4evHrqQQSRrpkk_chFWIqfLIqg55KmU41025qkLP73tnTRo85lGPi9N8MbQo6BLgCovBR8AZGUku-QGUiehAIi2CUzypI0pDSh--TAuQ9KQURMzsjVI24C16H2VtXBGv17W7qgam1glTdtoHsfdMp6MwyNad4C1ZSBrnvn0Q7jIdmrVO3waNvn5PXm-iW7C1dPt_fZchVqQbkP00pKhSqONcbAIC0ixTDShSrjsmQiUYxWnHFOq1gIhgI5UK21Ai4xLXjB5-Rs8u1s-9mj8_naOI11rRpse5ezNIJEAP0bjBKZiCGfOTmfQG1b5yxWeWfNWtmvHGg-RpkLnk9RDuzp1lQ5rerKqkYb9yMQHFgaj7svJmyDRVs5bbDR-EMtQUr28BxRTocaTdP_05nx4zuarO0bP0hPJqlB_JVsj_0G0G6cAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25797499</pqid></control><display><type>article</type><title>New spectral methods for ratio cut partitioning and clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Hagen, L. ; Kahng, A.B.</creator><creatorcontrib>Hagen, L. ; Kahng, A.B.</creatorcontrib><description>Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symmetric eigenvalue problem are a robust basis for computing heuristic ratio cuts based on the eigenvector of this second eigenvalue. Effective clustering methods are an immediate by-product of the second eigenvector computation and are very successful on the difficult input classes proposed in the CAD literature. The intersection graph representation of the circuit netlist is considered, as a basis for partitioning, a heuristic based on spectral ratio cut partitioning of the netlist intersection graph is proposed. The partitioning heuristics were tested on industry benchmark suites, and the results were good in terms of both solution quality and runtime. Several types of algorithmic speedups and directions for future work are discussed.< ></description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/43.159993</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>NEW YORK: IEEE</publisher><subject>Applied sciences ; Benchmark testing ; Circuit testing ; Clustering methods ; Computer Science ; Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Cost function ; Design. Technologies. Operation analysis. Testing ; Eigenvalues and eigenfunctions ; Electronics ; Engineering ; Engineering, Electrical & Electronic ; Exact sciences and technology ; Integrated circuits ; Robustness ; Runtime ; Science & Technology ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sparse matrices ; Symmetric matrices ; Technology ; Very large scale integration</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 1992-09, Vol.11 (9), p.1074-1085</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>695</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wosA1992JQ50300003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c403t-8f99aea66ce61218b5a2e5cbad6dd247a20f32330f6442e4e310ccca139e8b3b3</citedby><cites>FETCH-LOGICAL-c403t-8f99aea66ce61218b5a2e5cbad6dd247a20f32330f6442e4e310ccca139e8b3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/159993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27197,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/159993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4312860$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagen, L.</creatorcontrib><creatorcontrib>Kahng, A.B.</creatorcontrib><title>New spectral methods for ratio cut partitioning and clustering</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><addtitle>IEEE T COMPUT AID D</addtitle><description>Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symmetric eigenvalue problem are a robust basis for computing heuristic ratio cuts based on the eigenvector of this second eigenvalue. Effective clustering methods are an immediate by-product of the second eigenvector computation and are very successful on the difficult input classes proposed in the CAD literature. The intersection graph representation of the circuit netlist is considered, as a basis for partitioning, a heuristic based on spectral ratio cut partitioning of the netlist intersection graph is proposed. The partitioning heuristics were tested on industry benchmark suites, and the results were good in terms of both solution quality and runtime. Several types of algorithmic speedups and directions for future work are discussed.< ></description><subject>Applied sciences</subject><subject>Benchmark testing</subject><subject>Circuit testing</subject><subject>Clustering methods</subject><subject>Computer Science</subject><subject>Computer Science, Hardware & Architecture</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Cost function</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electronics</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Robustness</subject><subject>Runtime</subject><subject>Science & Technology</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sparse matrices</subject><subject>Symmetric matrices</subject><subject>Technology</subject><subject>Very large scale integration</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>EZCTM</sourceid><recordid>eNqNkc1LxDAQxYMouK4evHrqQQSRrpkk_chFWIqfLIqg55KmU41025qkLP73tnTRo85lGPi9N8MbQo6BLgCovBR8AZGUku-QGUiehAIi2CUzypI0pDSh--TAuQ9KQURMzsjVI24C16H2VtXBGv17W7qgam1glTdtoHsfdMp6MwyNad4C1ZSBrnvn0Q7jIdmrVO3waNvn5PXm-iW7C1dPt_fZchVqQbkP00pKhSqONcbAIC0ixTDShSrjsmQiUYxWnHFOq1gIhgI5UK21Ai4xLXjB5-Rs8u1s-9mj8_naOI11rRpse5ezNIJEAP0bjBKZiCGfOTmfQG1b5yxWeWfNWtmvHGg-RpkLnk9RDuzp1lQ5rerKqkYb9yMQHFgaj7svJmyDRVs5bbDR-EMtQUr28BxRTocaTdP_05nx4zuarO0bP0hPJqlB_JVsj_0G0G6cAw</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Hagen, L.</creator><creator>Kahng, A.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>BLEPL</scope><scope>DTL</scope><scope>EZCTM</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19920901</creationdate><title>New spectral methods for ratio cut partitioning and clustering</title><author>Hagen, L. ; Kahng, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-8f99aea66ce61218b5a2e5cbad6dd247a20f32330f6442e4e310ccca139e8b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Benchmark testing</topic><topic>Circuit testing</topic><topic>Clustering methods</topic><topic>Computer Science</topic><topic>Computer Science, Hardware & Architecture</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Cost function</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electronics</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Robustness</topic><topic>Runtime</topic><topic>Science & Technology</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sparse matrices</topic><topic>Symmetric matrices</topic><topic>Technology</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagen, L.</creatorcontrib><creatorcontrib>Kahng, A.B.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 1992</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hagen, L.</au><au>Kahng, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New spectral methods for ratio cut partitioning and clustering</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><stitle>IEEE T COMPUT AID D</stitle><date>1992-09-01</date><risdate>1992</risdate><volume>11</volume><issue>9</issue><spage>1074</spage><epage>1085</epage><pages>1074-1085</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Partitioning of circuit netlists in VLSI design is considered. It is shown that the second smallest eigenvalue of a matrix derived from the netlist gives a provably good approximation of the optimal ratio cut partition cost. It is also demonstrated that fast Lanczos-type methods for the sparse symmetric eigenvalue problem are a robust basis for computing heuristic ratio cuts based on the eigenvector of this second eigenvalue. Effective clustering methods are an immediate by-product of the second eigenvector computation and are very successful on the difficult input classes proposed in the CAD literature. The intersection graph representation of the circuit netlist is considered, as a basis for partitioning, a heuristic based on spectral ratio cut partitioning of the netlist intersection graph is proposed. The partitioning heuristics were tested on industry benchmark suites, and the results were good in terms of both solution quality and runtime. Several types of algorithmic speedups and directions for future work are discussed.< ></abstract><cop>NEW YORK</cop><pub>IEEE</pub><doi>10.1109/43.159993</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 1992-09, Vol.11 (9), p.1074-1085 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_miscellaneous_28517410 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Benchmark testing Circuit testing Clustering methods Computer Science Computer Science, Hardware & Architecture Computer Science, Interdisciplinary Applications Cost function Design. Technologies. Operation analysis. Testing Eigenvalues and eigenfunctions Electronics Engineering Engineering, Electrical & Electronic Exact sciences and technology Integrated circuits Robustness Runtime Science & Technology Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sparse matrices Symmetric matrices Technology Very large scale integration |
title | New spectral methods for ratio cut partitioning and clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20spectral%20methods%20for%20ratio%20cut%20partitioning%20and%20clustering&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Hagen,%20L.&rft.date=1992-09-01&rft.volume=11&rft.issue=9&rft.spage=1074&rft.epage=1085&rft.pages=1074-1085&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/43.159993&rft_dat=%3Cproquest_RIE%3E28517410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25797499&rft_id=info:pmid/&rft_ieee_id=159993&rfr_iscdi=true |