Generalized solutions to a semilinear wave equation

Semilinear wave equations in space dimension n ⩽ 9 with singular data and various types of nonlinearities are considered. We employ the framework of the algebra G L 2 of generalized functions. In the general case, the nonlinear term is regularized with respect to a small parameter ε such that it bec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2005-05, Vol.61 (3), p.461-475
Hauptverfasser: Nedeljkov, M., Oberguggenberger, M., Pilipović, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 3
container_start_page 461
container_title Nonlinear analysis
container_volume 61
creator Nedeljkov, M.
Oberguggenberger, M.
Pilipović, S.
description Semilinear wave equations in space dimension n ⩽ 9 with singular data and various types of nonlinearities are considered. We employ the framework of the algebra G L 2 of generalized functions. In the general case, the nonlinear term is regularized with respect to a small parameter ε such that it becomes globally Lipschitz for each such ε . This produces a family of Cauchy problems, to which we construct a family of solutions which in turn determines an element of G L 2 which serves as a generalized solution to the original equation. For cubic nonlinear terms the equation is directly solved in G L 2 without regularizations. Finally, in certain cases, it is shown that the solution to the regularized equation coincides with the solution to the nonregularized one.
doi_str_mv 10.1016/j.na.2005.01.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28504576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X05000118</els_id><sourcerecordid>28504576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a3e67c6bf95a218efb9a60d3feb65e2e7a8c7645998502f1dc75ce2af3eca7773</originalsourceid><addsrcrecordid>eNp1kM1LAzEUxIMoWD_uHveit13zsUm23qRoFQpeFLyF1-wLpGyzbbJb0b_elBY8eXqH-c08Zgi5YbRilKn7VRWg4pTKirKKUnZCJqzRopScyVMyoULxUtbq85xcpLSimdBCTYiYY8AInf_Btkh9Nw6-D6kY-gKKhGvf-YAQiy_YYYHbEfbyFTlz0CW8Pt5L8vH89D57KRdv89fZ46K0NWdDCQKVtmrpphI4a9Atp6BoKxwulUSOGhqrVS2n00ZS7lhrtbTIwQm0oLUWl-TukLuJ_XbENJi1Txa7DgL2YzI8-2qpVQbpAbSxTymiM5vo1xC_DaNmv45ZmQBmv46hzOTu2XJ7zIZkoXMRgvXpz6dyLhM8cw8HDnPRncdokvUYLLY-oh1M2_v_n_wCQK15Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28504576</pqid></control><display><type>article</type><title>Generalized solutions to a semilinear wave equation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nedeljkov, M. ; Oberguggenberger, M. ; Pilipović, S.</creator><creatorcontrib>Nedeljkov, M. ; Oberguggenberger, M. ; Pilipović, S.</creatorcontrib><description>Semilinear wave equations in space dimension n ⩽ 9 with singular data and various types of nonlinearities are considered. We employ the framework of the algebra G L 2 of generalized functions. In the general case, the nonlinear term is regularized with respect to a small parameter ε such that it becomes globally Lipschitz for each such ε . This produces a family of Cauchy problems, to which we construct a family of solutions which in turn determines an element of G L 2 which serves as a generalized solution to the original equation. For cubic nonlinear terms the equation is directly solved in G L 2 without regularizations. Finally, in certain cases, it is shown that the solution to the regularized equation coincides with the solution to the nonregularized one.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2005.01.001</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algebras of generalized functions ; Cutoff and regularization ; Exact sciences and technology ; Functional analysis ; Generalized solutions ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use ; Semilinear wave equations</subject><ispartof>Nonlinear analysis, 2005-05, Vol.61 (3), p.461-475</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a3e67c6bf95a218efb9a60d3feb65e2e7a8c7645998502f1dc75ce2af3eca7773</citedby><cites>FETCH-LOGICAL-c421t-a3e67c6bf95a218efb9a60d3feb65e2e7a8c7645998502f1dc75ce2af3eca7773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2005.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16576132$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nedeljkov, M.</creatorcontrib><creatorcontrib>Oberguggenberger, M.</creatorcontrib><creatorcontrib>Pilipović, S.</creatorcontrib><title>Generalized solutions to a semilinear wave equation</title><title>Nonlinear analysis</title><description>Semilinear wave equations in space dimension n ⩽ 9 with singular data and various types of nonlinearities are considered. We employ the framework of the algebra G L 2 of generalized functions. In the general case, the nonlinear term is regularized with respect to a small parameter ε such that it becomes globally Lipschitz for each such ε . This produces a family of Cauchy problems, to which we construct a family of solutions which in turn determines an element of G L 2 which serves as a generalized solution to the original equation. For cubic nonlinear terms the equation is directly solved in G L 2 without regularizations. Finally, in certain cases, it is shown that the solution to the regularized equation coincides with the solution to the nonregularized one.</description><subject>Algebras of generalized functions</subject><subject>Cutoff and regularization</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Generalized solutions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Semilinear wave equations</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEUxIMoWD_uHveit13zsUm23qRoFQpeFLyF1-wLpGyzbbJb0b_elBY8eXqH-c08Zgi5YbRilKn7VRWg4pTKirKKUnZCJqzRopScyVMyoULxUtbq85xcpLSimdBCTYiYY8AInf_Btkh9Nw6-D6kY-gKKhGvf-YAQiy_YYYHbEfbyFTlz0CW8Pt5L8vH89D57KRdv89fZ46K0NWdDCQKVtmrpphI4a9Atp6BoKxwulUSOGhqrVS2n00ZS7lhrtbTIwQm0oLUWl-TukLuJ_XbENJi1Txa7DgL2YzI8-2qpVQbpAbSxTymiM5vo1xC_DaNmv45ZmQBmv46hzOTu2XJ7zIZkoXMRgvXpz6dyLhM8cw8HDnPRncdokvUYLLY-oh1M2_v_n_wCQK15Pw</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Nedeljkov, M.</creator><creator>Oberguggenberger, M.</creator><creator>Pilipović, S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050501</creationdate><title>Generalized solutions to a semilinear wave equation</title><author>Nedeljkov, M. ; Oberguggenberger, M. ; Pilipović, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a3e67c6bf95a218efb9a60d3feb65e2e7a8c7645998502f1dc75ce2af3eca7773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebras of generalized functions</topic><topic>Cutoff and regularization</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Generalized solutions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Semilinear wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nedeljkov, M.</creatorcontrib><creatorcontrib>Oberguggenberger, M.</creatorcontrib><creatorcontrib>Pilipović, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nedeljkov, M.</au><au>Oberguggenberger, M.</au><au>Pilipović, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized solutions to a semilinear wave equation</atitle><jtitle>Nonlinear analysis</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>61</volume><issue>3</issue><spage>461</spage><epage>475</epage><pages>461-475</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Semilinear wave equations in space dimension n ⩽ 9 with singular data and various types of nonlinearities are considered. We employ the framework of the algebra G L 2 of generalized functions. In the general case, the nonlinear term is regularized with respect to a small parameter ε such that it becomes globally Lipschitz for each such ε . This produces a family of Cauchy problems, to which we construct a family of solutions which in turn determines an element of G L 2 which serves as a generalized solution to the original equation. For cubic nonlinear terms the equation is directly solved in G L 2 without regularizations. Finally, in certain cases, it is shown that the solution to the regularized equation coincides with the solution to the nonregularized one.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2005.01.001</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2005-05, Vol.61 (3), p.461-475
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_28504576
source ScienceDirect Journals (5 years ago - present)
subjects Algebras of generalized functions
Cutoff and regularization
Exact sciences and technology
Functional analysis
Generalized solutions
Mathematical analysis
Mathematics
Partial differential equations
Sciences and techniques of general use
Semilinear wave equations
title Generalized solutions to a semilinear wave equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20solutions%20to%20a%20semilinear%20wave%20equation&rft.jtitle=Nonlinear%20analysis&rft.au=Nedeljkov,%20M.&rft.date=2005-05-01&rft.volume=61&rft.issue=3&rft.spage=461&rft.epage=475&rft.pages=461-475&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2005.01.001&rft_dat=%3Cproquest_cross%3E28504576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28504576&rft_id=info:pmid/&rft_els_id=S0362546X05000118&rfr_iscdi=true