Granular collapse in two dimensions

An experimental investigation is conducted into the collapse of granular columns inside rectangular channels. The final shape is documented for slumps inside relatively wide channels, and for collapses inside much narrower slots. In both cases, the collapse is initiated by withdrawing a swinging gat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2005-09, Vol.538, p.399-428
Hauptverfasser: BALMFORTH, N. J., KERSWELL, R. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue
container_start_page 399
container_title Journal of fluid mechanics
container_volume 538
creator BALMFORTH, N. J.
KERSWELL, R. R.
description An experimental investigation is conducted into the collapse of granular columns inside rectangular channels. The final shape is documented for slumps inside relatively wide channels, and for collapses inside much narrower slots. In both cases, the collapse is initiated by withdrawing a swinging gate or sliding door, and the flow remains fairly two-dimensional. Four different granular media are used; the properties of the materials vary significantly, notably in their angles of friction for basal sliding and internal deformation. If $H$ is the initial height of the column, $h_{\infty}$ the maximum final height of the column and $a$ the initial aspect ratio, then the data suggest that $H/h_{\infty} \,{\sim} a^{0.6}$ in wide channels and $H/h_{\infty} \,{\sim}\, a^{0.5}$ for narrow slots. For the runout, we find that $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.9\pm 0.1}$ for wide channels, and $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.65\pm0.05}$ or $l_\infty/L \,{\sim}\, a^{0.55\pm0.05}$ for narrow slots, where $l_{\infty}$ is the maximum runout of the material and $L$ the initial length of the column along the channel ($a\,{:=}\,H/L$). In all cases, the numerical constant of proportionality in these scaling relations shows clear material dependence. In wide slots, there is no obvious universal scaling behaviour of the final profile, but such a behaviour is evident in narrow slots. The experimental results are compared with theoretical results based on a shallow granular-flow model. The qualitative behaviour of the slump in the wide slot is reproduced by the theoretical model. However, there is qualitative disagreement between theory and the experiments in the narrow slot because of the occurrence of secondary surface avalanching.
doi_str_mv 10.1017/S0022112005005537
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28503361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112005005537</cupid><sourcerecordid>1399148851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-3a42036b4282d85754c7225143ef16e92f107193146c4212d778f373b45b5da93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNui6G11Jp-boxRbhYJIFbyFdDcrW_ejJlvUf29KiwVFGJjD-8zw8BJyinCFgOp6BkApIgUQcQRTe2SAXOpUSS72yWAdp-v8kByFsABABloNyPnE23ZVW5_kXV3bZXBJ1Sb9R5cUVePaUHVtOCYHpa2DO9nuIXke3z6N7tLpw-R-dDNNcy5ZnzLLKTA55zSjRSaU4LmiVCBnrkTpNC0RFGoWtXJOkRZKZSVTbM7FXBRWsyG53Pxd-u595UJvmirkLmq1rlsFQzMBjEmM4NkvcNGtfBvdDEXIMqkZRAg3UO67ELwrzdJXjfVfBsGsOzN_Oos3F9vHNuS2LmM3eRV2hwqBasojl264KvTu8ye3_s1IxZQwcvJoYIYvU021GUeebV1sM_dV8ep2xv_bfAOjXYUZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210886930</pqid></control><display><type>article</type><title>Granular collapse in two dimensions</title><source>Cambridge University Press Journals Complete</source><creator>BALMFORTH, N. J. ; KERSWELL, R. R.</creator><creatorcontrib>BALMFORTH, N. J. ; KERSWELL, R. R.</creatorcontrib><description>An experimental investigation is conducted into the collapse of granular columns inside rectangular channels. The final shape is documented for slumps inside relatively wide channels, and for collapses inside much narrower slots. In both cases, the collapse is initiated by withdrawing a swinging gate or sliding door, and the flow remains fairly two-dimensional. Four different granular media are used; the properties of the materials vary significantly, notably in their angles of friction for basal sliding and internal deformation. If $H$ is the initial height of the column, $h_{\infty}$ the maximum final height of the column and $a$ the initial aspect ratio, then the data suggest that $H/h_{\infty} \,{\sim} a^{0.6}$ in wide channels and $H/h_{\infty} \,{\sim}\, a^{0.5}$ for narrow slots. For the runout, we find that $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.9\pm 0.1}$ for wide channels, and $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.65\pm0.05}$ or $l_\infty/L \,{\sim}\, a^{0.55\pm0.05}$ for narrow slots, where $l_{\infty}$ is the maximum runout of the material and $L$ the initial length of the column along the channel ($a\,{:=}\,H/L$). In all cases, the numerical constant of proportionality in these scaling relations shows clear material dependence. In wide slots, there is no obvious universal scaling behaviour of the final profile, but such a behaviour is evident in narrow slots. The experimental results are compared with theoretical results based on a shallow granular-flow model. The qualitative behaviour of the slump in the wide slot is reproduced by the theoretical model. However, there is qualitative disagreement between theory and the experiments in the narrow slot because of the occurrence of secondary surface avalanching.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112005005537</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fluid mechanics ; Granular solids ; Material form ; Physics ; Rheology</subject><ispartof>Journal of fluid mechanics, 2005-09, Vol.538, p.399-428</ispartof><rights>2005 Cambridge University Press</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-3a42036b4282d85754c7225143ef16e92f107193146c4212d778f373b45b5da93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112005005537/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27915,27916,55619</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17102924$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BALMFORTH, N. J.</creatorcontrib><creatorcontrib>KERSWELL, R. R.</creatorcontrib><title>Granular collapse in two dimensions</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>An experimental investigation is conducted into the collapse of granular columns inside rectangular channels. The final shape is documented for slumps inside relatively wide channels, and for collapses inside much narrower slots. In both cases, the collapse is initiated by withdrawing a swinging gate or sliding door, and the flow remains fairly two-dimensional. Four different granular media are used; the properties of the materials vary significantly, notably in their angles of friction for basal sliding and internal deformation. If $H$ is the initial height of the column, $h_{\infty}$ the maximum final height of the column and $a$ the initial aspect ratio, then the data suggest that $H/h_{\infty} \,{\sim} a^{0.6}$ in wide channels and $H/h_{\infty} \,{\sim}\, a^{0.5}$ for narrow slots. For the runout, we find that $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.9\pm 0.1}$ for wide channels, and $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.65\pm0.05}$ or $l_\infty/L \,{\sim}\, a^{0.55\pm0.05}$ for narrow slots, where $l_{\infty}$ is the maximum runout of the material and $L$ the initial length of the column along the channel ($a\,{:=}\,H/L$). In all cases, the numerical constant of proportionality in these scaling relations shows clear material dependence. In wide slots, there is no obvious universal scaling behaviour of the final profile, but such a behaviour is evident in narrow slots. The experimental results are compared with theoretical results based on a shallow granular-flow model. The qualitative behaviour of the slump in the wide slot is reproduced by the theoretical model. However, there is qualitative disagreement between theory and the experiments in the narrow slot because of the occurrence of secondary surface avalanching.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Granular solids</subject><subject>Material form</subject><subject>Physics</subject><subject>Rheology</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNui6G11Jp-boxRbhYJIFbyFdDcrW_ejJlvUf29KiwVFGJjD-8zw8BJyinCFgOp6BkApIgUQcQRTe2SAXOpUSS72yWAdp-v8kByFsABABloNyPnE23ZVW5_kXV3bZXBJ1Sb9R5cUVePaUHVtOCYHpa2DO9nuIXke3z6N7tLpw-R-dDNNcy5ZnzLLKTA55zSjRSaU4LmiVCBnrkTpNC0RFGoWtXJOkRZKZSVTbM7FXBRWsyG53Pxd-u595UJvmirkLmq1rlsFQzMBjEmM4NkvcNGtfBvdDEXIMqkZRAg3UO67ELwrzdJXjfVfBsGsOzN_Oos3F9vHNuS2LmM3eRV2hwqBasojl264KvTu8ye3_s1IxZQwcvJoYIYvU021GUeebV1sM_dV8ep2xv_bfAOjXYUZ</recordid><startdate>20050910</startdate><enddate>20050910</enddate><creator>BALMFORTH, N. J.</creator><creator>KERSWELL, R. R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20050910</creationdate><title>Granular collapse in two dimensions</title><author>BALMFORTH, N. J. ; KERSWELL, R. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-3a42036b4282d85754c7225143ef16e92f107193146c4212d778f373b45b5da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Granular solids</topic><topic>Material form</topic><topic>Physics</topic><topic>Rheology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BALMFORTH, N. J.</creatorcontrib><creatorcontrib>KERSWELL, R. R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BALMFORTH, N. J.</au><au>KERSWELL, R. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Granular collapse in two dimensions</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2005-09-10</date><risdate>2005</risdate><volume>538</volume><spage>399</spage><epage>428</epage><pages>399-428</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>An experimental investigation is conducted into the collapse of granular columns inside rectangular channels. The final shape is documented for slumps inside relatively wide channels, and for collapses inside much narrower slots. In both cases, the collapse is initiated by withdrawing a swinging gate or sliding door, and the flow remains fairly two-dimensional. Four different granular media are used; the properties of the materials vary significantly, notably in their angles of friction for basal sliding and internal deformation. If $H$ is the initial height of the column, $h_{\infty}$ the maximum final height of the column and $a$ the initial aspect ratio, then the data suggest that $H/h_{\infty} \,{\sim} a^{0.6}$ in wide channels and $H/h_{\infty} \,{\sim}\, a^{0.5}$ for narrow slots. For the runout, we find that $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.9\pm 0.1}$ for wide channels, and $(l_{\infty}\,{-}\,L)/L \,{\sim}\, a^{0.65\pm0.05}$ or $l_\infty/L \,{\sim}\, a^{0.55\pm0.05}$ for narrow slots, where $l_{\infty}$ is the maximum runout of the material and $L$ the initial length of the column along the channel ($a\,{:=}\,H/L$). In all cases, the numerical constant of proportionality in these scaling relations shows clear material dependence. In wide slots, there is no obvious universal scaling behaviour of the final profile, but such a behaviour is evident in narrow slots. The experimental results are compared with theoretical results based on a shallow granular-flow model. The qualitative behaviour of the slump in the wide slot is reproduced by the theoretical model. However, there is qualitative disagreement between theory and the experiments in the narrow slot because of the occurrence of secondary surface avalanching.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112005005537</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2005-09, Vol.538, p.399-428
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_28503361
source Cambridge University Press Journals Complete
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fluid mechanics
Granular solids
Material form
Physics
Rheology
title Granular collapse in two dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Granular%20collapse%20in%20two%20dimensions&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=BALMFORTH,%20N.%20J.&rft.date=2005-09-10&rft.volume=538&rft.spage=399&rft.epage=428&rft.pages=399-428&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112005005537&rft_dat=%3Cproquest_cross%3E1399148851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210886930&rft_id=info:pmid/&rft_cupid=10_1017_S0022112005005537&rfr_iscdi=true