The Mechanical and Biological Performance of Photopolymerized Gelatin‐Based Hydrogels as a Function of the Reaction Media
From the first experiments with biomaterials to mimic tissue properties, the mechanical and biochemical characterization has evolved extensively. Several properties can be described, however, what should be essential is to conduct a proper and physiologically relevant characterization. Herein, the i...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2023-12, Vol.23 (12), p.e2300227-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e2300227 |
container_title | Macromolecular bioscience |
container_volume | 23 |
creator | Pamplona, Regina González‐Lana, Sandra Romero, Pilar Ochoa, Ignacio Martín‐Rapún, Rafael Sánchez‐Somolinos, Carlos |
description | From the first experiments with biomaterials to mimic tissue properties, the mechanical and biochemical characterization has evolved extensively. Several properties can be described, however, what should be essential is to conduct a proper and physiologically relevant characterization. Herein, the influence of the reaction media (RM) and swelling media (SM)–phosphate buffered saline (PBS) and Dulbecco's modified Eagle's medium (DMEM) with two different glucose concentrations–is described in gelatin methacrylamide (GelMA) hydrogel mechanics and in the biological behavior of two tumoral cell lines (Caco‐2 and HCT‐116). All scaffolds are UV‐photocrosslinked under identical conditions and evaluated for mass swelling ratio and stiffness. The results indicate that stiffness is highly susceptible to the RM, but not to the SM. Additionally, PBS‐prepared hydrogels exhibited a higher photopolymerization degree according to high resolution magic‐angle spinning (HR‐MAS) NMR. These findings correlate with the biological response of Caco‐2 and HCT‐116 cells seeded on the substrates, which demonstrated flatter morphologies on stiffer hydrogels. Overall, cell viability and proliferation are excellent for both cell lines, and Caco‐2 cells displayed a characteristic apical‐basal polarization based on F‐actin/Nuclei fluorescence images. These characterization experiments highlight the importance of conducting mechanical testing of biomaterials in the same medium as cell culture.
A remarkable influence of reaction media (RM) in photopolymerizable gelatin methacrylamide (GelMA)‐based hydrogel mechanics and cell behavior has been confirmed. The stiffness of scaffolds is highly susceptible to the RM used in hydrogels preparation and these different mechanical properties have shown a direct impact on the cell response (morphology, proliferation, and distribution pattern) tested through in vitro experiments with two types of colorectal cancer cells. |
doi_str_mv | 10.1002/mabi.202300227 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2850312343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850312343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3647-277d382fb92cf45a74d5a971ec114a0ba86aded1e58e38aa554609e2d2cb43ae3</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRTIy5epQBL1527c_pmWM2mA_IYpDk3NR012Q79Eyv3TOE1Ys_wd_oL3HWjSvkEiioeuGptwpeQt4xOmeU8k8dNH7OKReT4PoFOWQlK2eK1erlfq70AXmT8z2lTFc1f00OhFaaC8EOyY-bFRZLtCvovYVQQO-KhY8h3v2V15jamDroLRaxLa5XcYjrGDYdJv8dXXGOAQbf__75awF50hcbl-IdhlzAVMXZ2NvBx367O0yHviLs9BKdh7fkVQsh4_FjPyK3Z59vTi9mV1_OL09PrmZWlFLPuNZOVLxtam5bqUBLp6DWDC1jEmgDVQkOHUNVoagAlJIlrZE7bhspAMUR-bjzXaf4bcQ8mM5niyFAj3HMhleKCsaFFBP64Ql6H8fUT98ZXlMqtZCqnqj5jrIp5pywNevkO0gbw6jZxmK2sZh9LNPC-0fbsenQ7fF_OUxAvQMefMDNM3ZmebK4_G_-B2xLmp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900473459</pqid></control><display><type>article</type><title>The Mechanical and Biological Performance of Photopolymerized Gelatin‐Based Hydrogels as a Function of the Reaction Media</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pamplona, Regina ; González‐Lana, Sandra ; Romero, Pilar ; Ochoa, Ignacio ; Martín‐Rapún, Rafael ; Sánchez‐Somolinos, Carlos</creator><creatorcontrib>Pamplona, Regina ; González‐Lana, Sandra ; Romero, Pilar ; Ochoa, Ignacio ; Martín‐Rapún, Rafael ; Sánchez‐Somolinos, Carlos</creatorcontrib><description>From the first experiments with biomaterials to mimic tissue properties, the mechanical and biochemical characterization has evolved extensively. Several properties can be described, however, what should be essential is to conduct a proper and physiologically relevant characterization. Herein, the influence of the reaction media (RM) and swelling media (SM)–phosphate buffered saline (PBS) and Dulbecco's modified Eagle's medium (DMEM) with two different glucose concentrations–is described in gelatin methacrylamide (GelMA) hydrogel mechanics and in the biological behavior of two tumoral cell lines (Caco‐2 and HCT‐116). All scaffolds are UV‐photocrosslinked under identical conditions and evaluated for mass swelling ratio and stiffness. The results indicate that stiffness is highly susceptible to the RM, but not to the SM. Additionally, PBS‐prepared hydrogels exhibited a higher photopolymerization degree according to high resolution magic‐angle spinning (HR‐MAS) NMR. These findings correlate with the biological response of Caco‐2 and HCT‐116 cells seeded on the substrates, which demonstrated flatter morphologies on stiffer hydrogels. Overall, cell viability and proliferation are excellent for both cell lines, and Caco‐2 cells displayed a characteristic apical‐basal polarization based on F‐actin/Nuclei fluorescence images. These characterization experiments highlight the importance of conducting mechanical testing of biomaterials in the same medium as cell culture.
A remarkable influence of reaction media (RM) in photopolymerizable gelatin methacrylamide (GelMA)‐based hydrogel mechanics and cell behavior has been confirmed. The stiffness of scaffolds is highly susceptible to the RM used in hydrogels preparation and these different mechanical properties have shown a direct impact on the cell response (morphology, proliferation, and distribution pattern) tested through in vitro experiments with two types of colorectal cancer cells.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202300227</identifier><identifier>PMID: 37572331</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Actin ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Biomaterials ; Biomedical materials ; Caco-2 Cells ; Cell culture ; Cell lines ; Cell proliferation ; Cell viability ; colorectal ; Fluorescence ; Gelatin ; Gelatin - chemistry ; Humans ; hydrogel ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Mechanical properties ; Mechanical tests ; Methacrylamide ; nanoindentation ; NMR ; Nuclear magnetic resonance ; Photopolymerization ; Stiffness ; Substrates ; Swelling ratio ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Macromolecular bioscience, 2023-12, Vol.23 (12), p.e2300227-n/a</ispartof><rights>2023 The Authors. Macromolecular Bioscience published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3647-277d382fb92cf45a74d5a971ec114a0ba86aded1e58e38aa554609e2d2cb43ae3</citedby><cites>FETCH-LOGICAL-c3647-277d382fb92cf45a74d5a971ec114a0ba86aded1e58e38aa554609e2d2cb43ae3</cites><orcidid>0000-0003-2410-5678 ; 0000-0003-3900-2866 ; 0000-0002-1647-8207 ; 0000-0003-1378-0571 ; 0000-0002-4768-0678 ; 0000-0003-0702-8260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202300227$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202300227$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37572331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pamplona, Regina</creatorcontrib><creatorcontrib>González‐Lana, Sandra</creatorcontrib><creatorcontrib>Romero, Pilar</creatorcontrib><creatorcontrib>Ochoa, Ignacio</creatorcontrib><creatorcontrib>Martín‐Rapún, Rafael</creatorcontrib><creatorcontrib>Sánchez‐Somolinos, Carlos</creatorcontrib><title>The Mechanical and Biological Performance of Photopolymerized Gelatin‐Based Hydrogels as a Function of the Reaction Media</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>From the first experiments with biomaterials to mimic tissue properties, the mechanical and biochemical characterization has evolved extensively. Several properties can be described, however, what should be essential is to conduct a proper and physiologically relevant characterization. Herein, the influence of the reaction media (RM) and swelling media (SM)–phosphate buffered saline (PBS) and Dulbecco's modified Eagle's medium (DMEM) with two different glucose concentrations–is described in gelatin methacrylamide (GelMA) hydrogel mechanics and in the biological behavior of two tumoral cell lines (Caco‐2 and HCT‐116). All scaffolds are UV‐photocrosslinked under identical conditions and evaluated for mass swelling ratio and stiffness. The results indicate that stiffness is highly susceptible to the RM, but not to the SM. Additionally, PBS‐prepared hydrogels exhibited a higher photopolymerization degree according to high resolution magic‐angle spinning (HR‐MAS) NMR. These findings correlate with the biological response of Caco‐2 and HCT‐116 cells seeded on the substrates, which demonstrated flatter morphologies on stiffer hydrogels. Overall, cell viability and proliferation are excellent for both cell lines, and Caco‐2 cells displayed a characteristic apical‐basal polarization based on F‐actin/Nuclei fluorescence images. These characterization experiments highlight the importance of conducting mechanical testing of biomaterials in the same medium as cell culture.
A remarkable influence of reaction media (RM) in photopolymerizable gelatin methacrylamide (GelMA)‐based hydrogel mechanics and cell behavior has been confirmed. The stiffness of scaffolds is highly susceptible to the RM used in hydrogels preparation and these different mechanical properties have shown a direct impact on the cell response (morphology, proliferation, and distribution pattern) tested through in vitro experiments with two types of colorectal cancer cells.</description><subject>Actin</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Caco-2 Cells</subject><subject>Cell culture</subject><subject>Cell lines</subject><subject>Cell proliferation</subject><subject>Cell viability</subject><subject>colorectal</subject><subject>Fluorescence</subject><subject>Gelatin</subject><subject>Gelatin - chemistry</subject><subject>Humans</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Methacrylamide</subject><subject>nanoindentation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Photopolymerization</subject><subject>Stiffness</subject><subject>Substrates</subject><subject>Swelling ratio</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1rFEEQhhtRTIy5epQBL1527c_pmWM2mA_IYpDk3NR012Q79Eyv3TOE1Ys_wd_oL3HWjSvkEiioeuGptwpeQt4xOmeU8k8dNH7OKReT4PoFOWQlK2eK1erlfq70AXmT8z2lTFc1f00OhFaaC8EOyY-bFRZLtCvovYVQQO-KhY8h3v2V15jamDroLRaxLa5XcYjrGDYdJv8dXXGOAQbf__75awF50hcbl-IdhlzAVMXZ2NvBx367O0yHviLs9BKdh7fkVQsh4_FjPyK3Z59vTi9mV1_OL09PrmZWlFLPuNZOVLxtam5bqUBLp6DWDC1jEmgDVQkOHUNVoagAlJIlrZE7bhspAMUR-bjzXaf4bcQ8mM5niyFAj3HMhleKCsaFFBP64Ql6H8fUT98ZXlMqtZCqnqj5jrIp5pywNevkO0gbw6jZxmK2sZh9LNPC-0fbsenQ7fF_OUxAvQMefMDNM3ZmebK4_G_-B2xLmp0</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Pamplona, Regina</creator><creator>González‐Lana, Sandra</creator><creator>Romero, Pilar</creator><creator>Ochoa, Ignacio</creator><creator>Martín‐Rapún, Rafael</creator><creator>Sánchez‐Somolinos, Carlos</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2410-5678</orcidid><orcidid>https://orcid.org/0000-0003-3900-2866</orcidid><orcidid>https://orcid.org/0000-0002-1647-8207</orcidid><orcidid>https://orcid.org/0000-0003-1378-0571</orcidid><orcidid>https://orcid.org/0000-0002-4768-0678</orcidid><orcidid>https://orcid.org/0000-0003-0702-8260</orcidid></search><sort><creationdate>202312</creationdate><title>The Mechanical and Biological Performance of Photopolymerized Gelatin‐Based Hydrogels as a Function of the Reaction Media</title><author>Pamplona, Regina ; González‐Lana, Sandra ; Romero, Pilar ; Ochoa, Ignacio ; Martín‐Rapún, Rafael ; Sánchez‐Somolinos, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3647-277d382fb92cf45a74d5a971ec114a0ba86aded1e58e38aa554609e2d2cb43ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actin</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Caco-2 Cells</topic><topic>Cell culture</topic><topic>Cell lines</topic><topic>Cell proliferation</topic><topic>Cell viability</topic><topic>colorectal</topic><topic>Fluorescence</topic><topic>Gelatin</topic><topic>Gelatin - chemistry</topic><topic>Humans</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Methacrylamide</topic><topic>nanoindentation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Photopolymerization</topic><topic>Stiffness</topic><topic>Substrates</topic><topic>Swelling ratio</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pamplona, Regina</creatorcontrib><creatorcontrib>González‐Lana, Sandra</creatorcontrib><creatorcontrib>Romero, Pilar</creatorcontrib><creatorcontrib>Ochoa, Ignacio</creatorcontrib><creatorcontrib>Martín‐Rapún, Rafael</creatorcontrib><creatorcontrib>Sánchez‐Somolinos, Carlos</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pamplona, Regina</au><au>González‐Lana, Sandra</au><au>Romero, Pilar</au><au>Ochoa, Ignacio</au><au>Martín‐Rapún, Rafael</au><au>Sánchez‐Somolinos, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mechanical and Biological Performance of Photopolymerized Gelatin‐Based Hydrogels as a Function of the Reaction Media</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2023-12</date><risdate>2023</risdate><volume>23</volume><issue>12</issue><spage>e2300227</spage><epage>n/a</epage><pages>e2300227-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>From the first experiments with biomaterials to mimic tissue properties, the mechanical and biochemical characterization has evolved extensively. Several properties can be described, however, what should be essential is to conduct a proper and physiologically relevant characterization. Herein, the influence of the reaction media (RM) and swelling media (SM)–phosphate buffered saline (PBS) and Dulbecco's modified Eagle's medium (DMEM) with two different glucose concentrations–is described in gelatin methacrylamide (GelMA) hydrogel mechanics and in the biological behavior of two tumoral cell lines (Caco‐2 and HCT‐116). All scaffolds are UV‐photocrosslinked under identical conditions and evaluated for mass swelling ratio and stiffness. The results indicate that stiffness is highly susceptible to the RM, but not to the SM. Additionally, PBS‐prepared hydrogels exhibited a higher photopolymerization degree according to high resolution magic‐angle spinning (HR‐MAS) NMR. These findings correlate with the biological response of Caco‐2 and HCT‐116 cells seeded on the substrates, which demonstrated flatter morphologies on stiffer hydrogels. Overall, cell viability and proliferation are excellent for both cell lines, and Caco‐2 cells displayed a characteristic apical‐basal polarization based on F‐actin/Nuclei fluorescence images. These characterization experiments highlight the importance of conducting mechanical testing of biomaterials in the same medium as cell culture.
A remarkable influence of reaction media (RM) in photopolymerizable gelatin methacrylamide (GelMA)‐based hydrogel mechanics and cell behavior has been confirmed. The stiffness of scaffolds is highly susceptible to the RM used in hydrogels preparation and these different mechanical properties have shown a direct impact on the cell response (morphology, proliferation, and distribution pattern) tested through in vitro experiments with two types of colorectal cancer cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37572331</pmid><doi>10.1002/mabi.202300227</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2410-5678</orcidid><orcidid>https://orcid.org/0000-0003-3900-2866</orcidid><orcidid>https://orcid.org/0000-0002-1647-8207</orcidid><orcidid>https://orcid.org/0000-0003-1378-0571</orcidid><orcidid>https://orcid.org/0000-0002-4768-0678</orcidid><orcidid>https://orcid.org/0000-0003-0702-8260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2023-12, Vol.23 (12), p.e2300227-n/a |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_2850312343 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Actin Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Biomaterials Biomedical materials Caco-2 Cells Cell culture Cell lines Cell proliferation Cell viability colorectal Fluorescence Gelatin Gelatin - chemistry Humans hydrogel Hydrogels Hydrogels - chemistry Hydrogels - pharmacology Mechanical properties Mechanical tests Methacrylamide nanoindentation NMR Nuclear magnetic resonance Photopolymerization Stiffness Substrates Swelling ratio Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | The Mechanical and Biological Performance of Photopolymerized Gelatin‐Based Hydrogels as a Function of the Reaction Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mechanical%20and%20Biological%20Performance%20of%20Photopolymerized%20Gelatin%E2%80%90Based%20Hydrogels%20as%20a%20Function%20of%20the%20Reaction%20Media&rft.jtitle=Macromolecular%20bioscience&rft.au=Pamplona,%20Regina&rft.date=2023-12&rft.volume=23&rft.issue=12&rft.spage=e2300227&rft.epage=n/a&rft.pages=e2300227-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202300227&rft_dat=%3Cproquest_cross%3E2850312343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900473459&rft_id=info:pmid/37572331&rfr_iscdi=true |