Upgrading of solid recovered fuel (SRF) by dechlorination and catalytic pyrolysis over nanocrystalline ZSM-5 zeolite

Globally increasing concern related to municipal solid waste generation is encouraging research efforts on developing alternative routes to valorize mixed refused wastes. In this way, catalytic pyrolysis is emerging as an interesting and efficient technology due to its great flexibility in terms of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2023-10, Vol.339, p.139784-139784, Article 139784
Hauptverfasser: Cueto, J., Pérez-Martin, G., Amodio, L., Paniagua, M., Morales, G., Melero, J.A., Serrano, D.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139784
container_issue
container_start_page 139784
container_title Chemosphere (Oxford)
container_volume 339
creator Cueto, J.
Pérez-Martin, G.
Amodio, L.
Paniagua, M.
Morales, G.
Melero, J.A.
Serrano, D.P.
description Globally increasing concern related to municipal solid waste generation is encouraging research efforts on developing alternative routes to valorize mixed refused wastes. In this way, catalytic pyrolysis is emerging as an interesting and efficient technology due to its great flexibility in terms of feedstock. In the current work, upgrading of a Solid Recovered Fuel (SRF) has been investigated by catalytic pyrolysis over nanocrystalline ZSM-5 zeolite (n-ZSM-5), paying special attention to dechlorination effects due to the high Cl content of the raw waste. Thus, pretreatment of the SRF by water washing and mild thermal processing allows for a significant reduction of the Cl concentration. Regarding the catalytic pyrolysis step, the best conditions correspond with a temperature of 400 °C in the catalyst bed and 0.50 catalyst/SRF mass ratio, which lead to ca. 30 wt% oil yield (rich in aromatic hydrocarbons) together with about 40 wt% gas yield (rich in C3–C4 olefins). Accordingly, these products could find use as raw chemicals or for the production of advanced fuels. In addition, zeolite reutilization has been tested for several cycles, denoting a progressive modification of the products distribution because of coke deposition. However, an almost total recovery of the n-ZSM-5 zeolite catalytic performance is achieved after regeneration by air calcination, affording the production of an oil fraction with a Cl content as low as 40 ppm. [Display omitted] •Catalytic pyrolysis of Solid Recovered Fuel using n-ZSM-5 leads to a highly dechlorinated oil.•Washing and thermal SRF pre-treatments reduce Cl content in the resultant pyrolysis oil.•Pyrolysis products rich in light olefins (gas) and aromatic hydrocarbons (oil).•Catalyst is deactivated during reuse, its performance being recovered by air calcination.
doi_str_mv 10.1016/j.chemosphere.2023.139784
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2850310471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653523020519</els_id><sourcerecordid>2850310471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e2ed8e358ae3b616d99356530190d40b911719ce537f4016f6b3020dabb29f4a3</originalsourceid><addsrcrecordid>eNqNkMtO3DAUhi1EVabQV0DuDhaZ-hIn8bIaQVsJVInLho3l2CeMRx47tTNI4enr0dCqS1Zncf6L_g-hL5QsKaHN183SrGEb87iGBEtGGF9SLtuuPkIL2rWyokx2x2hBSC2qRnBxgj7lvCGkmIX8iE54K5qWtd0CTY_jc9LWhWccB5yjdxYnMPGlJFs87MDji_u760vcz9iCWfuYXNCTiwHrYLHRk_bz5Awe5xT9nF3Gey8OOkST5lze3gXAT_e3lcCvUAomOEMfBu0zfH67p-jx-uph9aO6-fX95-rbTWWYZFMFDGwHXHQaeN_QxkrJRZlDqCS2Jr2ktKXSgODtUJdpQ9NzwojVfc_kUGt-ii4OuWOKv3eQJ7V12YD3OkDcZcU6QTgldUuLVB6kJsWcEwxqTG6r06woUXvoaqP-g6720NUBevGev9Xs-i3Yf86_lItgdRBAGfviIKlsHAQD1hXWk7LRvaPmD-i8mgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850310471</pqid></control><display><type>article</type><title>Upgrading of solid recovered fuel (SRF) by dechlorination and catalytic pyrolysis over nanocrystalline ZSM-5 zeolite</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cueto, J. ; Pérez-Martin, G. ; Amodio, L. ; Paniagua, M. ; Morales, G. ; Melero, J.A. ; Serrano, D.P.</creator><creatorcontrib>Cueto, J. ; Pérez-Martin, G. ; Amodio, L. ; Paniagua, M. ; Morales, G. ; Melero, J.A. ; Serrano, D.P.</creatorcontrib><description>Globally increasing concern related to municipal solid waste generation is encouraging research efforts on developing alternative routes to valorize mixed refused wastes. In this way, catalytic pyrolysis is emerging as an interesting and efficient technology due to its great flexibility in terms of feedstock. In the current work, upgrading of a Solid Recovered Fuel (SRF) has been investigated by catalytic pyrolysis over nanocrystalline ZSM-5 zeolite (n-ZSM-5), paying special attention to dechlorination effects due to the high Cl content of the raw waste. Thus, pretreatment of the SRF by water washing and mild thermal processing allows for a significant reduction of the Cl concentration. Regarding the catalytic pyrolysis step, the best conditions correspond with a temperature of 400 °C in the catalyst bed and 0.50 catalyst/SRF mass ratio, which lead to ca. 30 wt% oil yield (rich in aromatic hydrocarbons) together with about 40 wt% gas yield (rich in C3–C4 olefins). Accordingly, these products could find use as raw chemicals or for the production of advanced fuels. In addition, zeolite reutilization has been tested for several cycles, denoting a progressive modification of the products distribution because of coke deposition. However, an almost total recovery of the n-ZSM-5 zeolite catalytic performance is achieved after regeneration by air calcination, affording the production of an oil fraction with a Cl content as low as 40 ppm. [Display omitted] •Catalytic pyrolysis of Solid Recovered Fuel using n-ZSM-5 leads to a highly dechlorinated oil.•Washing and thermal SRF pre-treatments reduce Cl content in the resultant pyrolysis oil.•Pyrolysis products rich in light olefins (gas) and aromatic hydrocarbons (oil).•Catalyst is deactivated during reuse, its performance being recovered by air calcination.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2023.139784</identifier><identifier>PMID: 37567278</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aromatic hydrocarbons ; Catalytic pyrolysis ; Dechlorination ; Solid recovered fuel ; ZSM-5</subject><ispartof>Chemosphere (Oxford), 2023-10, Vol.339, p.139784-139784, Article 139784</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e2ed8e358ae3b616d99356530190d40b911719ce537f4016f6b3020dabb29f4a3</citedby><cites>FETCH-LOGICAL-c292t-e2ed8e358ae3b616d99356530190d40b911719ce537f4016f6b3020dabb29f4a3</cites><orcidid>0000-0002-5070-4749 ; 0000-0001-5383-3944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2023.139784$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37567278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cueto, J.</creatorcontrib><creatorcontrib>Pérez-Martin, G.</creatorcontrib><creatorcontrib>Amodio, L.</creatorcontrib><creatorcontrib>Paniagua, M.</creatorcontrib><creatorcontrib>Morales, G.</creatorcontrib><creatorcontrib>Melero, J.A.</creatorcontrib><creatorcontrib>Serrano, D.P.</creatorcontrib><title>Upgrading of solid recovered fuel (SRF) by dechlorination and catalytic pyrolysis over nanocrystalline ZSM-5 zeolite</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>Globally increasing concern related to municipal solid waste generation is encouraging research efforts on developing alternative routes to valorize mixed refused wastes. In this way, catalytic pyrolysis is emerging as an interesting and efficient technology due to its great flexibility in terms of feedstock. In the current work, upgrading of a Solid Recovered Fuel (SRF) has been investigated by catalytic pyrolysis over nanocrystalline ZSM-5 zeolite (n-ZSM-5), paying special attention to dechlorination effects due to the high Cl content of the raw waste. Thus, pretreatment of the SRF by water washing and mild thermal processing allows for a significant reduction of the Cl concentration. Regarding the catalytic pyrolysis step, the best conditions correspond with a temperature of 400 °C in the catalyst bed and 0.50 catalyst/SRF mass ratio, which lead to ca. 30 wt% oil yield (rich in aromatic hydrocarbons) together with about 40 wt% gas yield (rich in C3–C4 olefins). Accordingly, these products could find use as raw chemicals or for the production of advanced fuels. In addition, zeolite reutilization has been tested for several cycles, denoting a progressive modification of the products distribution because of coke deposition. However, an almost total recovery of the n-ZSM-5 zeolite catalytic performance is achieved after regeneration by air calcination, affording the production of an oil fraction with a Cl content as low as 40 ppm. [Display omitted] •Catalytic pyrolysis of Solid Recovered Fuel using n-ZSM-5 leads to a highly dechlorinated oil.•Washing and thermal SRF pre-treatments reduce Cl content in the resultant pyrolysis oil.•Pyrolysis products rich in light olefins (gas) and aromatic hydrocarbons (oil).•Catalyst is deactivated during reuse, its performance being recovered by air calcination.</description><subject>Aromatic hydrocarbons</subject><subject>Catalytic pyrolysis</subject><subject>Dechlorination</subject><subject>Solid recovered fuel</subject><subject>ZSM-5</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkMtO3DAUhi1EVabQV0DuDhaZ-hIn8bIaQVsJVInLho3l2CeMRx47tTNI4enr0dCqS1Zncf6L_g-hL5QsKaHN183SrGEb87iGBEtGGF9SLtuuPkIL2rWyokx2x2hBSC2qRnBxgj7lvCGkmIX8iE54K5qWtd0CTY_jc9LWhWccB5yjdxYnMPGlJFs87MDji_u760vcz9iCWfuYXNCTiwHrYLHRk_bz5Awe5xT9nF3Gey8OOkST5lze3gXAT_e3lcCvUAomOEMfBu0zfH67p-jx-uph9aO6-fX95-rbTWWYZFMFDGwHXHQaeN_QxkrJRZlDqCS2Jr2ktKXSgODtUJdpQ9NzwojVfc_kUGt-ii4OuWOKv3eQJ7V12YD3OkDcZcU6QTgldUuLVB6kJsWcEwxqTG6r06woUXvoaqP-g6720NUBevGev9Xs-i3Yf86_lItgdRBAGfviIKlsHAQD1hXWk7LRvaPmD-i8mgM</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cueto, J.</creator><creator>Pérez-Martin, G.</creator><creator>Amodio, L.</creator><creator>Paniagua, M.</creator><creator>Morales, G.</creator><creator>Melero, J.A.</creator><creator>Serrano, D.P.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5070-4749</orcidid><orcidid>https://orcid.org/0000-0001-5383-3944</orcidid></search><sort><creationdate>20231001</creationdate><title>Upgrading of solid recovered fuel (SRF) by dechlorination and catalytic pyrolysis over nanocrystalline ZSM-5 zeolite</title><author>Cueto, J. ; Pérez-Martin, G. ; Amodio, L. ; Paniagua, M. ; Morales, G. ; Melero, J.A. ; Serrano, D.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e2ed8e358ae3b616d99356530190d40b911719ce537f4016f6b3020dabb29f4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aromatic hydrocarbons</topic><topic>Catalytic pyrolysis</topic><topic>Dechlorination</topic><topic>Solid recovered fuel</topic><topic>ZSM-5</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cueto, J.</creatorcontrib><creatorcontrib>Pérez-Martin, G.</creatorcontrib><creatorcontrib>Amodio, L.</creatorcontrib><creatorcontrib>Paniagua, M.</creatorcontrib><creatorcontrib>Morales, G.</creatorcontrib><creatorcontrib>Melero, J.A.</creatorcontrib><creatorcontrib>Serrano, D.P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cueto, J.</au><au>Pérez-Martin, G.</au><au>Amodio, L.</au><au>Paniagua, M.</au><au>Morales, G.</au><au>Melero, J.A.</au><au>Serrano, D.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upgrading of solid recovered fuel (SRF) by dechlorination and catalytic pyrolysis over nanocrystalline ZSM-5 zeolite</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>339</volume><spage>139784</spage><epage>139784</epage><pages>139784-139784</pages><artnum>139784</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>Globally increasing concern related to municipal solid waste generation is encouraging research efforts on developing alternative routes to valorize mixed refused wastes. In this way, catalytic pyrolysis is emerging as an interesting and efficient technology due to its great flexibility in terms of feedstock. In the current work, upgrading of a Solid Recovered Fuel (SRF) has been investigated by catalytic pyrolysis over nanocrystalline ZSM-5 zeolite (n-ZSM-5), paying special attention to dechlorination effects due to the high Cl content of the raw waste. Thus, pretreatment of the SRF by water washing and mild thermal processing allows for a significant reduction of the Cl concentration. Regarding the catalytic pyrolysis step, the best conditions correspond with a temperature of 400 °C in the catalyst bed and 0.50 catalyst/SRF mass ratio, which lead to ca. 30 wt% oil yield (rich in aromatic hydrocarbons) together with about 40 wt% gas yield (rich in C3–C4 olefins). Accordingly, these products could find use as raw chemicals or for the production of advanced fuels. In addition, zeolite reutilization has been tested for several cycles, denoting a progressive modification of the products distribution because of coke deposition. However, an almost total recovery of the n-ZSM-5 zeolite catalytic performance is achieved after regeneration by air calcination, affording the production of an oil fraction with a Cl content as low as 40 ppm. [Display omitted] •Catalytic pyrolysis of Solid Recovered Fuel using n-ZSM-5 leads to a highly dechlorinated oil.•Washing and thermal SRF pre-treatments reduce Cl content in the resultant pyrolysis oil.•Pyrolysis products rich in light olefins (gas) and aromatic hydrocarbons (oil).•Catalyst is deactivated during reuse, its performance being recovered by air calcination.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37567278</pmid><doi>10.1016/j.chemosphere.2023.139784</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5070-4749</orcidid><orcidid>https://orcid.org/0000-0001-5383-3944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2023-10, Vol.339, p.139784-139784, Article 139784
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_2850310471
source Elsevier ScienceDirect Journals Complete
subjects Aromatic hydrocarbons
Catalytic pyrolysis
Dechlorination
Solid recovered fuel
ZSM-5
title Upgrading of solid recovered fuel (SRF) by dechlorination and catalytic pyrolysis over nanocrystalline ZSM-5 zeolite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upgrading%20of%20solid%20recovered%20fuel%20(SRF)%20by%20dechlorination%20and%20catalytic%20pyrolysis%20over%20nanocrystalline%20ZSM-5%20zeolite&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Cueto,%20J.&rft.date=2023-10-01&rft.volume=339&rft.spage=139784&rft.epage=139784&rft.pages=139784-139784&rft.artnum=139784&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2023.139784&rft_dat=%3Cproquest_cross%3E2850310471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850310471&rft_id=info:pmid/37567278&rft_els_id=S0045653523020519&rfr_iscdi=true