Anion Confinement for Homogeneous Mixed Halide Perovskite Film Growth by Electrospray
Wide‐bandgap perovskites are promising absorbers for state‐of‐the‐art tandem solar cells to feasibly surpass Shockley–Queisser limit with low cost. However, the commonly used mixed halide perovskites suffer from poor stability; particularly, photoinduced phase segregation. Electrospray deposition is...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-11, Vol.35 (45), p.e2305822-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 45 |
container_start_page | e2305822 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Niu, Xiuxiu Li, Nengxu Cui, Zhenhua Li, Liang Pei, Fengtao Lan, Yisha Song, Qizhen Du, Yujiang Dou, Jing Bao, Zhaoboxun Wang, Lina Liu, Huifen Li, Kailin Zhang, Xinran Huang, Zijian Wang, Lan Zhou, Wentao Yuan, Guizhou Chen, Yihua Zhou, Huanping Zhu, Cheng Liu, Guilin Bai, Yang Chen, Qi |
description | Wide‐bandgap perovskites are promising absorbers for state‐of‐the‐art tandem solar cells to feasibly surpass Shockley–Queisser limit with low cost. However, the commonly used mixed halide perovskites suffer from poor stability; particularly, photoinduced phase segregation. Electrospray deposition is developed to bridge the gap of growth rate between iodide and bromide components during film growth by spatially confining the anion diffusion and eliminating the kinetic difference, which universally improves the initial homogeneity of perovskite films regardless of device architectures. It thus promotes the efficiency and stability of corresponding solar cells based on wide‐bandgap (1.68 eV) absorbers. Remarkable power conversion efficiencies (PCEs) of 21.44% and 20.77% are achieved in 0.08 cm2 and 1.0 cm2 devices, respectively. In addition, these devices maintain 90% of their initial PCE after 1550 h of stabilized power output (SPO) tracking upon one sun irradiation (LED) at room temperature.
Electrospray deposition shows great advance to bridge the gap of growth rate between iodide and bromide components by spatially confining the anion diffusion, which universally improves the homogeneity of perovskite films. As a result, the efficiency and stability of wide‐bandgap PSCs are significantly promoted. |
doi_str_mv | 10.1002/adma.202305822 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2850309458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887135039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3502-7dd6e6da5d6edfbb1e83c6b29c7b60f0f6e08564d122c9028dcc9160dba68d303</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqWwMltiYUk5O7Vrj1WhFAkEA8yRY1_AJYmLnQL99wSKQGJhesv3Tu8-Qo4ZjBgAPzOuMSMOPAehON8hAyY4y8agxS4ZgM5FpuVY7ZODlJYAoCXIAXmYtj60dBbayrfYYNvRKkS6CE14xBbDOtEb_46OLkztHdI7jOE1PfsO6dzXDb2M4a17ouWGXtRouxjSKprNIdmrTJ3w6DuH5GF-cT9bZNe3l1ez6XVmcwE8mzgnUToj-nBVWTJUuZUl13ZSSqigkghKyLFjnFsNXDlrNZPgSiOVyyEfktPt3VUML2tMXdH4ZLGuzdf0gisBOeixUD168gddhnVs-3U9pSasH5TrnhptKdt_kiJWxSr6xsRNwaD4tFx8Wi5-LPcFvS28-Ro3_9DF9Pxm-tv9ALhqgPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887135039</pqid></control><display><type>article</type><title>Anion Confinement for Homogeneous Mixed Halide Perovskite Film Growth by Electrospray</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Niu, Xiuxiu ; Li, Nengxu ; Cui, Zhenhua ; Li, Liang ; Pei, Fengtao ; Lan, Yisha ; Song, Qizhen ; Du, Yujiang ; Dou, Jing ; Bao, Zhaoboxun ; Wang, Lina ; Liu, Huifen ; Li, Kailin ; Zhang, Xinran ; Huang, Zijian ; Wang, Lan ; Zhou, Wentao ; Yuan, Guizhou ; Chen, Yihua ; Zhou, Huanping ; Zhu, Cheng ; Liu, Guilin ; Bai, Yang ; Chen, Qi</creator><creatorcontrib>Niu, Xiuxiu ; Li, Nengxu ; Cui, Zhenhua ; Li, Liang ; Pei, Fengtao ; Lan, Yisha ; Song, Qizhen ; Du, Yujiang ; Dou, Jing ; Bao, Zhaoboxun ; Wang, Lina ; Liu, Huifen ; Li, Kailin ; Zhang, Xinran ; Huang, Zijian ; Wang, Lan ; Zhou, Wentao ; Yuan, Guizhou ; Chen, Yihua ; Zhou, Huanping ; Zhu, Cheng ; Liu, Guilin ; Bai, Yang ; Chen, Qi</creatorcontrib><description>Wide‐bandgap perovskites are promising absorbers for state‐of‐the‐art tandem solar cells to feasibly surpass Shockley–Queisser limit with low cost. However, the commonly used mixed halide perovskites suffer from poor stability; particularly, photoinduced phase segregation. Electrospray deposition is developed to bridge the gap of growth rate between iodide and bromide components during film growth by spatially confining the anion diffusion and eliminating the kinetic difference, which universally improves the initial homogeneity of perovskite films regardless of device architectures. It thus promotes the efficiency and stability of corresponding solar cells based on wide‐bandgap (1.68 eV) absorbers. Remarkable power conversion efficiencies (PCEs) of 21.44% and 20.77% are achieved in 0.08 cm2 and 1.0 cm2 devices, respectively. In addition, these devices maintain 90% of their initial PCE after 1550 h of stabilized power output (SPO) tracking upon one sun irradiation (LED) at room temperature.
Electrospray deposition shows great advance to bridge the gap of growth rate between iodide and bromide components by spatially confining the anion diffusion, which universally improves the homogeneity of perovskite films. As a result, the efficiency and stability of wide‐bandgap PSCs are significantly promoted.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202305822</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Anions ; electrospray ; Electrospraying ; Energy conversion efficiency ; Energy gap ; Film growth ; Homogeneity ; Perovskites ; Photovoltaic cells ; Room temperature ; Solar cells ; Stability</subject><ispartof>Advanced materials (Weinheim), 2023-11, Vol.35 (45), p.e2305822-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3502-7dd6e6da5d6edfbb1e83c6b29c7b60f0f6e08564d122c9028dcc9160dba68d303</citedby><cites>FETCH-LOGICAL-c3502-7dd6e6da5d6edfbb1e83c6b29c7b60f0f6e08564d122c9028dcc9160dba68d303</cites><orcidid>0000-0002-9647-5873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202305822$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202305822$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Niu, Xiuxiu</creatorcontrib><creatorcontrib>Li, Nengxu</creatorcontrib><creatorcontrib>Cui, Zhenhua</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Pei, Fengtao</creatorcontrib><creatorcontrib>Lan, Yisha</creatorcontrib><creatorcontrib>Song, Qizhen</creatorcontrib><creatorcontrib>Du, Yujiang</creatorcontrib><creatorcontrib>Dou, Jing</creatorcontrib><creatorcontrib>Bao, Zhaoboxun</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Liu, Huifen</creatorcontrib><creatorcontrib>Li, Kailin</creatorcontrib><creatorcontrib>Zhang, Xinran</creatorcontrib><creatorcontrib>Huang, Zijian</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhou, Wentao</creatorcontrib><creatorcontrib>Yuan, Guizhou</creatorcontrib><creatorcontrib>Chen, Yihua</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Liu, Guilin</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><title>Anion Confinement for Homogeneous Mixed Halide Perovskite Film Growth by Electrospray</title><title>Advanced materials (Weinheim)</title><description>Wide‐bandgap perovskites are promising absorbers for state‐of‐the‐art tandem solar cells to feasibly surpass Shockley–Queisser limit with low cost. However, the commonly used mixed halide perovskites suffer from poor stability; particularly, photoinduced phase segregation. Electrospray deposition is developed to bridge the gap of growth rate between iodide and bromide components during film growth by spatially confining the anion diffusion and eliminating the kinetic difference, which universally improves the initial homogeneity of perovskite films regardless of device architectures. It thus promotes the efficiency and stability of corresponding solar cells based on wide‐bandgap (1.68 eV) absorbers. Remarkable power conversion efficiencies (PCEs) of 21.44% and 20.77% are achieved in 0.08 cm2 and 1.0 cm2 devices, respectively. In addition, these devices maintain 90% of their initial PCE after 1550 h of stabilized power output (SPO) tracking upon one sun irradiation (LED) at room temperature.
Electrospray deposition shows great advance to bridge the gap of growth rate between iodide and bromide components by spatially confining the anion diffusion, which universally improves the homogeneity of perovskite films. As a result, the efficiency and stability of wide‐bandgap PSCs are significantly promoted.</description><subject>Absorbers</subject><subject>Anions</subject><subject>electrospray</subject><subject>Electrospraying</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Film growth</subject><subject>Homogeneity</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>Stability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqWwMltiYUk5O7Vrj1WhFAkEA8yRY1_AJYmLnQL99wSKQGJhesv3Tu8-Qo4ZjBgAPzOuMSMOPAehON8hAyY4y8agxS4ZgM5FpuVY7ZODlJYAoCXIAXmYtj60dBbayrfYYNvRKkS6CE14xBbDOtEb_46OLkztHdI7jOE1PfsO6dzXDb2M4a17ouWGXtRouxjSKprNIdmrTJ3w6DuH5GF-cT9bZNe3l1ez6XVmcwE8mzgnUToj-nBVWTJUuZUl13ZSSqigkghKyLFjnFsNXDlrNZPgSiOVyyEfktPt3VUML2tMXdH4ZLGuzdf0gisBOeixUD168gddhnVs-3U9pSasH5TrnhptKdt_kiJWxSr6xsRNwaD4tFx8Wi5-LPcFvS28-Ro3_9DF9Pxm-tv9ALhqgPI</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Niu, Xiuxiu</creator><creator>Li, Nengxu</creator><creator>Cui, Zhenhua</creator><creator>Li, Liang</creator><creator>Pei, Fengtao</creator><creator>Lan, Yisha</creator><creator>Song, Qizhen</creator><creator>Du, Yujiang</creator><creator>Dou, Jing</creator><creator>Bao, Zhaoboxun</creator><creator>Wang, Lina</creator><creator>Liu, Huifen</creator><creator>Li, Kailin</creator><creator>Zhang, Xinran</creator><creator>Huang, Zijian</creator><creator>Wang, Lan</creator><creator>Zhou, Wentao</creator><creator>Yuan, Guizhou</creator><creator>Chen, Yihua</creator><creator>Zhou, Huanping</creator><creator>Zhu, Cheng</creator><creator>Liu, Guilin</creator><creator>Bai, Yang</creator><creator>Chen, Qi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9647-5873</orcidid></search><sort><creationdate>20231101</creationdate><title>Anion Confinement for Homogeneous Mixed Halide Perovskite Film Growth by Electrospray</title><author>Niu, Xiuxiu ; Li, Nengxu ; Cui, Zhenhua ; Li, Liang ; Pei, Fengtao ; Lan, Yisha ; Song, Qizhen ; Du, Yujiang ; Dou, Jing ; Bao, Zhaoboxun ; Wang, Lina ; Liu, Huifen ; Li, Kailin ; Zhang, Xinran ; Huang, Zijian ; Wang, Lan ; Zhou, Wentao ; Yuan, Guizhou ; Chen, Yihua ; Zhou, Huanping ; Zhu, Cheng ; Liu, Guilin ; Bai, Yang ; Chen, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3502-7dd6e6da5d6edfbb1e83c6b29c7b60f0f6e08564d122c9028dcc9160dba68d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbers</topic><topic>Anions</topic><topic>electrospray</topic><topic>Electrospraying</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Film growth</topic><topic>Homogeneity</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Xiuxiu</creatorcontrib><creatorcontrib>Li, Nengxu</creatorcontrib><creatorcontrib>Cui, Zhenhua</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Pei, Fengtao</creatorcontrib><creatorcontrib>Lan, Yisha</creatorcontrib><creatorcontrib>Song, Qizhen</creatorcontrib><creatorcontrib>Du, Yujiang</creatorcontrib><creatorcontrib>Dou, Jing</creatorcontrib><creatorcontrib>Bao, Zhaoboxun</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Liu, Huifen</creatorcontrib><creatorcontrib>Li, Kailin</creatorcontrib><creatorcontrib>Zhang, Xinran</creatorcontrib><creatorcontrib>Huang, Zijian</creatorcontrib><creatorcontrib>Wang, Lan</creatorcontrib><creatorcontrib>Zhou, Wentao</creatorcontrib><creatorcontrib>Yuan, Guizhou</creatorcontrib><creatorcontrib>Chen, Yihua</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Liu, Guilin</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Xiuxiu</au><au>Li, Nengxu</au><au>Cui, Zhenhua</au><au>Li, Liang</au><au>Pei, Fengtao</au><au>Lan, Yisha</au><au>Song, Qizhen</au><au>Du, Yujiang</au><au>Dou, Jing</au><au>Bao, Zhaoboxun</au><au>Wang, Lina</au><au>Liu, Huifen</au><au>Li, Kailin</au><au>Zhang, Xinran</au><au>Huang, Zijian</au><au>Wang, Lan</au><au>Zhou, Wentao</au><au>Yuan, Guizhou</au><au>Chen, Yihua</au><au>Zhou, Huanping</au><au>Zhu, Cheng</au><au>Liu, Guilin</au><au>Bai, Yang</au><au>Chen, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anion Confinement for Homogeneous Mixed Halide Perovskite Film Growth by Electrospray</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>35</volume><issue>45</issue><spage>e2305822</spage><epage>n/a</epage><pages>e2305822-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Wide‐bandgap perovskites are promising absorbers for state‐of‐the‐art tandem solar cells to feasibly surpass Shockley–Queisser limit with low cost. However, the commonly used mixed halide perovskites suffer from poor stability; particularly, photoinduced phase segregation. Electrospray deposition is developed to bridge the gap of growth rate between iodide and bromide components during film growth by spatially confining the anion diffusion and eliminating the kinetic difference, which universally improves the initial homogeneity of perovskite films regardless of device architectures. It thus promotes the efficiency and stability of corresponding solar cells based on wide‐bandgap (1.68 eV) absorbers. Remarkable power conversion efficiencies (PCEs) of 21.44% and 20.77% are achieved in 0.08 cm2 and 1.0 cm2 devices, respectively. In addition, these devices maintain 90% of their initial PCE after 1550 h of stabilized power output (SPO) tracking upon one sun irradiation (LED) at room temperature.
Electrospray deposition shows great advance to bridge the gap of growth rate between iodide and bromide components by spatially confining the anion diffusion, which universally improves the homogeneity of perovskite films. As a result, the efficiency and stability of wide‐bandgap PSCs are significantly promoted.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202305822</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9647-5873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-11, Vol.35 (45), p.e2305822-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2850309458 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorbers Anions electrospray Electrospraying Energy conversion efficiency Energy gap Film growth Homogeneity Perovskites Photovoltaic cells Room temperature Solar cells Stability |
title | Anion Confinement for Homogeneous Mixed Halide Perovskite Film Growth by Electrospray |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anion%20Confinement%20for%20Homogeneous%20Mixed%20Halide%20Perovskite%20Film%20Growth%20by%20Electrospray&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Niu,%20Xiuxiu&rft.date=2023-11-01&rft.volume=35&rft.issue=45&rft.spage=e2305822&rft.epage=n/a&rft.pages=e2305822-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202305822&rft_dat=%3Cproquest_cross%3E2887135039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887135039&rft_id=info:pmid/&rfr_iscdi=true |