MOF-derived single-atom catalysts for oxygen electrocatalysis in metal-air batteries

Electrocatalysts play a critical role in oxygen electrocatalysis, enabling great improvements for the future development and application of metal-air batteries. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are promising catalysts for oxygen electrocatalysis since they ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-08, Vol.15 (33), p.13487-13497
Hauptverfasser: Li, Le, Zhu, Qianyi, Han, Meijun, Tu, Xiaobin, Shen, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrocatalysts play a critical role in oxygen electrocatalysis, enabling great improvements for the future development and application of metal-air batteries. Single-atom catalysts (SACs) derived from metal-organic frameworks (MOFs) are promising catalysts for oxygen electrocatalysis since they are endowed with the merits of a distinctive electronic structure, a low-coordination environment, quantum size effect, and strong metal-support interaction. In addition, MOFs afford a desirable molecular platform for ensuring the synthesis of well-dispersed SACs, endowing them with remarkably high catalytic activity and durability. In this review, we focus on the current status of MOF-derived SACs used as catalysts for oxygen electrocatalysis, with special attention to MOF-derived strategies for the fabrication of SACs and their application in various metal-air batteries. Finally, to facilitate the future deployment of high-performing SACs, some technical challenges and the corresponding research directions are also proposed. A comprehensive review regarding MOF-derived SACs for the applications in metal-air batteries has been well summarized.
ISSN:2040-3364
2040-3372
DOI:10.1039/d3nr02548a