A parallel genetic algorithm for generation expansion planning

This paper presents an application of parallel genetic algorithm to optimal long-range generation expansion planning. The problem is formulated as a combinatorial optimization problem that determines the number of newly introduced generation units of each technology during different time intervals....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Power Systems 1996-05, Vol.11 (2), p.955-961
Hauptverfasser: Fukuyama, Y., Hsaio-Dong Chiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 2
container_start_page 955
container_title IEEE Transactions on Power Systems
container_volume 11
creator Fukuyama, Y.
Hsaio-Dong Chiang
description This paper presents an application of parallel genetic algorithm to optimal long-range generation expansion planning. The problem is formulated as a combinatorial optimization problem that determines the number of newly introduced generation units of each technology during different time intervals. A new string representation method for the problem is presented. Binary and decimal coding for the string representation method are compared. The method is implemented on transputers, one of the practical multi-processors. The effectiveness of the proposed method is demonstrated on a typical generation expansion problem with four technologies, five intervals, and a various number of generation units. It is compared favorably with dynamic programming and conventional genetic algorithm. The results reveal the speed and effectiveness of the proposed method for solving this problem.
doi_str_mv 10.1109/59.496180
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28501794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>496180</ieee_id><sourcerecordid>28501794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-1a059626471d9c9a36e29c2587a0353d8360625f2de804944a0692d8440fd5073</originalsourceid><addsrcrecordid>eNo9kMtLAzEQh4MoWB8Hr55WEMHD1slzk4tQxBcUvOg5hGy2jaTJmmxB_3tXt_Q0w_y--RgGoQsMc4xB3XE1Z0pgCQdohjmXNYhGHaIZSMlrqTgco5NSPgFAjMEM3S-q3mQTggvVykU3eFuZsErZD-tN1aX8P81m8ClW7rs3sfx1fTAx-rg6Q0edCcWd7-op-nh6fH94qZdvz68Pi2VtKSVDjQ1wJYhgDW6VVYYKR5QlXDYGKKetpAIE4R1pnQSmGDMgFGklY9C1HBp6iq4mbyqD18X6wdm1TTE6O-jRSxo8MjcT0-f0tXVl0BtfrAvjqS5tiyaSA24UG8HbCbQ5lZJdp_vsNyb_aAz674uaKz19cWSvd1JTrAldNtH6sl-goKARfMQuJ8w75_bpzvELGeN28g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28501794</pqid></control><display><type>article</type><title>A parallel genetic algorithm for generation expansion planning</title><source>IEEE Electronic Library (IEL)</source><creator>Fukuyama, Y. ; Hsaio-Dong Chiang</creator><creatorcontrib>Fukuyama, Y. ; Hsaio-Dong Chiang</creatorcontrib><description>This paper presents an application of parallel genetic algorithm to optimal long-range generation expansion planning. The problem is formulated as a combinatorial optimization problem that determines the number of newly introduced generation units of each technology during different time intervals. A new string representation method for the problem is presented. Binary and decimal coding for the string representation method are compared. The method is implemented on transputers, one of the practical multi-processors. The effectiveness of the proposed method is demonstrated on a typical generation expansion problem with four technologies, five intervals, and a various number of generation units. It is compared favorably with dynamic programming and conventional genetic algorithm. The results reveal the speed and effectiveness of the proposed method for solving this problem.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.496180</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>ALGORITHMS ; Applied sciences ; CAPACITY ; Dynamic programming ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; EXPANSION ; Genetic algorithms ; Operation. Load control. Reliability ; PARALLEL PROCESSING ; PLANNING ; Power networks and lines ; POWER SYSTEMS ; POWER TRANSMISSION AND DISTRIBUTION</subject><ispartof>IEEE Transactions on Power Systems, 1996-05, Vol.11 (2), p.955-961</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-1a059626471d9c9a36e29c2587a0353d8360625f2de804944a0692d8440fd5073</citedby><cites>FETCH-LOGICAL-c332t-1a059626471d9c9a36e29c2587a0353d8360625f2de804944a0692d8440fd5073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/496180$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,885,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/496180$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3090765$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/264271$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fukuyama, Y.</creatorcontrib><creatorcontrib>Hsaio-Dong Chiang</creatorcontrib><title>A parallel genetic algorithm for generation expansion planning</title><title>IEEE Transactions on Power Systems</title><addtitle>TPWRS</addtitle><description>This paper presents an application of parallel genetic algorithm to optimal long-range generation expansion planning. The problem is formulated as a combinatorial optimization problem that determines the number of newly introduced generation units of each technology during different time intervals. A new string representation method for the problem is presented. Binary and decimal coding for the string representation method are compared. The method is implemented on transputers, one of the practical multi-processors. The effectiveness of the proposed method is demonstrated on a typical generation expansion problem with four technologies, five intervals, and a various number of generation units. It is compared favorably with dynamic programming and conventional genetic algorithm. The results reveal the speed and effectiveness of the proposed method for solving this problem.</description><subject>ALGORITHMS</subject><subject>Applied sciences</subject><subject>CAPACITY</subject><subject>Dynamic programming</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>EXPANSION</subject><subject>Genetic algorithms</subject><subject>Operation. Load control. Reliability</subject><subject>PARALLEL PROCESSING</subject><subject>PLANNING</subject><subject>Power networks and lines</subject><subject>POWER SYSTEMS</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLAzEQh4MoWB8Hr55WEMHD1slzk4tQxBcUvOg5hGy2jaTJmmxB_3tXt_Q0w_y--RgGoQsMc4xB3XE1Z0pgCQdohjmXNYhGHaIZSMlrqTgco5NSPgFAjMEM3S-q3mQTggvVykU3eFuZsErZD-tN1aX8P81m8ClW7rs3sfx1fTAx-rg6Q0edCcWd7-op-nh6fH94qZdvz68Pi2VtKSVDjQ1wJYhgDW6VVYYKR5QlXDYGKKetpAIE4R1pnQSmGDMgFGklY9C1HBp6iq4mbyqD18X6wdm1TTE6O-jRSxo8MjcT0-f0tXVl0BtfrAvjqS5tiyaSA24UG8HbCbQ5lZJdp_vsNyb_aAz674uaKz19cWSvd1JTrAldNtH6sl-goKARfMQuJ8w75_bpzvELGeN28g</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Fukuyama, Y.</creator><creator>Hsaio-Dong Chiang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19960501</creationdate><title>A parallel genetic algorithm for generation expansion planning</title><author>Fukuyama, Y. ; Hsaio-Dong Chiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-1a059626471d9c9a36e29c2587a0353d8360625f2de804944a0692d8440fd5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>ALGORITHMS</topic><topic>Applied sciences</topic><topic>CAPACITY</topic><topic>Dynamic programming</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>EXPANSION</topic><topic>Genetic algorithms</topic><topic>Operation. Load control. Reliability</topic><topic>PARALLEL PROCESSING</topic><topic>PLANNING</topic><topic>Power networks and lines</topic><topic>POWER SYSTEMS</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukuyama, Y.</creatorcontrib><creatorcontrib>Hsaio-Dong Chiang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Power Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fukuyama, Y.</au><au>Hsaio-Dong Chiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parallel genetic algorithm for generation expansion planning</atitle><jtitle>IEEE Transactions on Power Systems</jtitle><stitle>TPWRS</stitle><date>1996-05-01</date><risdate>1996</risdate><volume>11</volume><issue>2</issue><spage>955</spage><epage>961</epage><pages>955-961</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents an application of parallel genetic algorithm to optimal long-range generation expansion planning. The problem is formulated as a combinatorial optimization problem that determines the number of newly introduced generation units of each technology during different time intervals. A new string representation method for the problem is presented. Binary and decimal coding for the string representation method are compared. The method is implemented on transputers, one of the practical multi-processors. The effectiveness of the proposed method is demonstrated on a typical generation expansion problem with four technologies, five intervals, and a various number of generation units. It is compared favorably with dynamic programming and conventional genetic algorithm. The results reveal the speed and effectiveness of the proposed method for solving this problem.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/59.496180</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE Transactions on Power Systems, 1996-05, Vol.11 (2), p.955-961
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_28501794
source IEEE Electronic Library (IEL)
subjects ALGORITHMS
Applied sciences
CAPACITY
Dynamic programming
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
EXPANSION
Genetic algorithms
Operation. Load control. Reliability
PARALLEL PROCESSING
PLANNING
Power networks and lines
POWER SYSTEMS
POWER TRANSMISSION AND DISTRIBUTION
title A parallel genetic algorithm for generation expansion planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parallel%20genetic%20algorithm%20for%20generation%20expansion%20planning&rft.jtitle=IEEE%20Transactions%20on%20Power%20Systems&rft.au=Fukuyama,%20Y.&rft.date=1996-05-01&rft.volume=11&rft.issue=2&rft.spage=955&rft.epage=961&rft.pages=955-961&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.496180&rft_dat=%3Cproquest_RIE%3E28501794%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28501794&rft_id=info:pmid/&rft_ieee_id=496180&rfr_iscdi=true