Particle filters for positioning, navigation, and tracking

A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2002-02, Vol.50 (2), p.425-437
Hauptverfasser: Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund, P.-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 2
container_start_page 425
container_title IEEE transactions on signal processing
container_volume 50
creator Gustafsson, F.
Gunnarsson, F.
Bergman, N.
Forssell, U.
Jansson, J.
Karlsson, R.
Nordlund, P.-J.
description A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.
doi_str_mv 10.1109/78.978396
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28499746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>978396</ieee_id><sourcerecordid>2430263281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-fdc8737c85bd2eb89c60991d97a5605a0c65a8e285c60d370ef12fc472949cce3</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAiCurqwaun4kERtmuS5mu8id-woAcVbyGbpku0NmvSKv57s3Tx4EFPmfA-DMxMlu1hNMEYwYmQExCyBL6WbWGguEBU8PVUI1YWTIrnzWw7xheEMKXAt7LTex06Zxqb167pbIh57UO-8NF1zreunY_zVn-4uV5-x7luq7wL2rymZCfbqHUT7e7qHWWPV5cP5zfF9O769vxsWhgmRFfUlZGiFEayWUXsTILhCABXIDTjiGlkONPSEslSUJUC2RqT2lBBgIIxthxl46Fv_LSLfqYWwb3p8KW8durCPZ0pH-aqcb0iwAlL_Gjgi-Dfexs79eaisU2jW-v7qAAJ4IySMsnDPyUBhDni5H8oKYCg_H8oeNoJWXY8-AVffB_atEYlJS0BEbFExwMywccYbP0zOkZqeW0lpBqunez-YJ219setwm--cKLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884390272</pqid></control><display><type>article</type><title>Particle filters for positioning, navigation, and tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Gustafsson, F. ; Gunnarsson, F. ; Bergman, N. ; Forssell, U. ; Jansson, J. ; Karlsson, R. ; Nordlund, P.-J.</creator><creatorcontrib>Gustafsson, F. ; Gunnarsson, F. ; Bergman, N. ; Forssell, U. ; Jansson, J. ; Karlsson, R. ; Nordlund, P.-J.</creatorcontrib><description>A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.</description><identifier>ISSN: 1053-587X</identifier><identifier>ISSN: 1941-0476</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.978396</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Aircraft ; Aircraft components ; Aircraft navigation ; Applications ; Automatic control ; Automotive engineering ; Bayesian estimation ; Global Positioning System ; Information technology ; Informationsteknik ; Kalman filters ; Mathematical models ; Monte Carlo methods ; Motion measurement ; Navigation ; Nonlinear equations ; Particle filters ; Particle tracking ; Position measurement ; Positioning ; Reglerteknik ; Satellite navigation systems ; Statistical signal processing ; Studies ; Target tracking ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>IEEE transactions on signal processing, 2002-02, Vol.50 (2), p.425-437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-fdc8737c85bd2eb89c60991d97a5605a0c65a8e285c60d370ef12fc472949cce3</citedby><cites>FETCH-LOGICAL-c577t-fdc8737c85bd2eb89c60991d97a5605a0c65a8e285c60d370ef12fc472949cce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/978396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/978396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-29625$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gustafsson, F.</creatorcontrib><creatorcontrib>Gunnarsson, F.</creatorcontrib><creatorcontrib>Bergman, N.</creatorcontrib><creatorcontrib>Forssell, U.</creatorcontrib><creatorcontrib>Jansson, J.</creatorcontrib><creatorcontrib>Karlsson, R.</creatorcontrib><creatorcontrib>Nordlund, P.-J.</creatorcontrib><title>Particle filters for positioning, navigation, and tracking</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.</description><subject>Accuracy</subject><subject>Aircraft</subject><subject>Aircraft components</subject><subject>Aircraft navigation</subject><subject>Applications</subject><subject>Automatic control</subject><subject>Automotive engineering</subject><subject>Bayesian estimation</subject><subject>Global Positioning System</subject><subject>Information technology</subject><subject>Informationsteknik</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Motion measurement</subject><subject>Navigation</subject><subject>Nonlinear equations</subject><subject>Particle filters</subject><subject>Particle tracking</subject><subject>Position measurement</subject><subject>Positioning</subject><subject>Reglerteknik</subject><subject>Satellite navigation systems</subject><subject>Statistical signal processing</subject><subject>Studies</subject><subject>Target tracking</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>1053-587X</issn><issn>1941-0476</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LxDAQBuAiCurqwaun4kERtmuS5mu8id-woAcVbyGbpku0NmvSKv57s3Tx4EFPmfA-DMxMlu1hNMEYwYmQExCyBL6WbWGguEBU8PVUI1YWTIrnzWw7xheEMKXAt7LTex06Zxqb167pbIh57UO-8NF1zreunY_zVn-4uV5-x7luq7wL2rymZCfbqHUT7e7qHWWPV5cP5zfF9O769vxsWhgmRFfUlZGiFEayWUXsTILhCABXIDTjiGlkONPSEslSUJUC2RqT2lBBgIIxthxl46Fv_LSLfqYWwb3p8KW8durCPZ0pH-aqcb0iwAlL_Gjgi-Dfexs79eaisU2jW-v7qAAJ4IySMsnDPyUBhDni5H8oKYCg_H8oeNoJWXY8-AVffB_atEYlJS0BEbFExwMywccYbP0zOkZqeW0lpBqunez-YJ219setwm--cKLk</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Gustafsson, F.</creator><creator>Gunnarsson, F.</creator><creator>Bergman, N.</creator><creator>Forssell, U.</creator><creator>Jansson, J.</creator><creator>Karlsson, R.</creator><creator>Nordlund, P.-J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20020201</creationdate><title>Particle filters for positioning, navigation, and tracking</title><author>Gustafsson, F. ; Gunnarsson, F. ; Bergman, N. ; Forssell, U. ; Jansson, J. ; Karlsson, R. ; Nordlund, P.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-fdc8737c85bd2eb89c60991d97a5605a0c65a8e285c60d370ef12fc472949cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accuracy</topic><topic>Aircraft</topic><topic>Aircraft components</topic><topic>Aircraft navigation</topic><topic>Applications</topic><topic>Automatic control</topic><topic>Automotive engineering</topic><topic>Bayesian estimation</topic><topic>Global Positioning System</topic><topic>Information technology</topic><topic>Informationsteknik</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Motion measurement</topic><topic>Navigation</topic><topic>Nonlinear equations</topic><topic>Particle filters</topic><topic>Particle tracking</topic><topic>Position measurement</topic><topic>Positioning</topic><topic>Reglerteknik</topic><topic>Satellite navigation systems</topic><topic>Statistical signal processing</topic><topic>Studies</topic><topic>Target tracking</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gustafsson, F.</creatorcontrib><creatorcontrib>Gunnarsson, F.</creatorcontrib><creatorcontrib>Bergman, N.</creatorcontrib><creatorcontrib>Forssell, U.</creatorcontrib><creatorcontrib>Jansson, J.</creatorcontrib><creatorcontrib>Karlsson, R.</creatorcontrib><creatorcontrib>Nordlund, P.-J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gustafsson, F.</au><au>Gunnarsson, F.</au><au>Bergman, N.</au><au>Forssell, U.</au><au>Jansson, J.</au><au>Karlsson, R.</au><au>Nordlund, P.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle filters for positioning, navigation, and tracking</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2002-02-01</date><risdate>2002</risdate><volume>50</volume><issue>2</issue><spage>425</spage><epage>437</epage><pages>425-437</pages><issn>1053-587X</issn><issn>1941-0476</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/78.978396</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2002-02, Vol.50 (2), p.425-437
issn 1053-587X
1941-0476
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28499746
source IEEE Electronic Library (IEL)
subjects Accuracy
Aircraft
Aircraft components
Aircraft navigation
Applications
Automatic control
Automotive engineering
Bayesian estimation
Global Positioning System
Information technology
Informationsteknik
Kalman filters
Mathematical models
Monte Carlo methods
Motion measurement
Navigation
Nonlinear equations
Particle filters
Particle tracking
Position measurement
Positioning
Reglerteknik
Satellite navigation systems
Statistical signal processing
Studies
Target tracking
TECHNOLOGY
TEKNIKVETENSKAP
title Particle filters for positioning, navigation, and tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20filters%20for%20positioning,%20navigation,%20and%20tracking&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Gustafsson,%20F.&rft.date=2002-02-01&rft.volume=50&rft.issue=2&rft.spage=425&rft.epage=437&rft.pages=425-437&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.978396&rft_dat=%3Cproquest_RIE%3E2430263281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884390272&rft_id=info:pmid/&rft_ieee_id=978396&rfr_iscdi=true