Particle filters for positioning, navigation, and tracking
A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the part...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2002-02, Vol.50 (2), p.425-437 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 2 |
container_start_page | 425 |
container_title | IEEE transactions on signal processing |
container_volume | 50 |
creator | Gustafsson, F. Gunnarsson, F. Bergman, N. Forssell, U. Jansson, J. Karlsson, R. Nordlund, P.-J. |
description | A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars. |
doi_str_mv | 10.1109/78.978396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28499746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>978396</ieee_id><sourcerecordid>2430263281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-fdc8737c85bd2eb89c60991d97a5605a0c65a8e285c60d370ef12fc472949cce3</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAiCurqwaun4kERtmuS5mu8id-woAcVbyGbpku0NmvSKv57s3Tx4EFPmfA-DMxMlu1hNMEYwYmQExCyBL6WbWGguEBU8PVUI1YWTIrnzWw7xheEMKXAt7LTex06Zxqb167pbIh57UO-8NF1zreunY_zVn-4uV5-x7luq7wL2rymZCfbqHUT7e7qHWWPV5cP5zfF9O769vxsWhgmRFfUlZGiFEayWUXsTILhCABXIDTjiGlkONPSEslSUJUC2RqT2lBBgIIxthxl46Fv_LSLfqYWwb3p8KW8durCPZ0pH-aqcb0iwAlL_Gjgi-Dfexs79eaisU2jW-v7qAAJ4IySMsnDPyUBhDni5H8oKYCg_H8oeNoJWXY8-AVffB_atEYlJS0BEbFExwMywccYbP0zOkZqeW0lpBqunez-YJ219setwm--cKLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884390272</pqid></control><display><type>article</type><title>Particle filters for positioning, navigation, and tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Gustafsson, F. ; Gunnarsson, F. ; Bergman, N. ; Forssell, U. ; Jansson, J. ; Karlsson, R. ; Nordlund, P.-J.</creator><creatorcontrib>Gustafsson, F. ; Gunnarsson, F. ; Bergman, N. ; Forssell, U. ; Jansson, J. ; Karlsson, R. ; Nordlund, P.-J.</creatorcontrib><description>A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.</description><identifier>ISSN: 1053-587X</identifier><identifier>ISSN: 1941-0476</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.978396</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Aircraft ; Aircraft components ; Aircraft navigation ; Applications ; Automatic control ; Automotive engineering ; Bayesian estimation ; Global Positioning System ; Information technology ; Informationsteknik ; Kalman filters ; Mathematical models ; Monte Carlo methods ; Motion measurement ; Navigation ; Nonlinear equations ; Particle filters ; Particle tracking ; Position measurement ; Positioning ; Reglerteknik ; Satellite navigation systems ; Statistical signal processing ; Studies ; Target tracking ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>IEEE transactions on signal processing, 2002-02, Vol.50 (2), p.425-437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-fdc8737c85bd2eb89c60991d97a5605a0c65a8e285c60d370ef12fc472949cce3</citedby><cites>FETCH-LOGICAL-c577t-fdc8737c85bd2eb89c60991d97a5605a0c65a8e285c60d370ef12fc472949cce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/978396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/978396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-29625$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gustafsson, F.</creatorcontrib><creatorcontrib>Gunnarsson, F.</creatorcontrib><creatorcontrib>Bergman, N.</creatorcontrib><creatorcontrib>Forssell, U.</creatorcontrib><creatorcontrib>Jansson, J.</creatorcontrib><creatorcontrib>Karlsson, R.</creatorcontrib><creatorcontrib>Nordlund, P.-J.</creatorcontrib><title>Particle filters for positioning, navigation, and tracking</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.</description><subject>Accuracy</subject><subject>Aircraft</subject><subject>Aircraft components</subject><subject>Aircraft navigation</subject><subject>Applications</subject><subject>Automatic control</subject><subject>Automotive engineering</subject><subject>Bayesian estimation</subject><subject>Global Positioning System</subject><subject>Information technology</subject><subject>Informationsteknik</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Motion measurement</subject><subject>Navigation</subject><subject>Nonlinear equations</subject><subject>Particle filters</subject><subject>Particle tracking</subject><subject>Position measurement</subject><subject>Positioning</subject><subject>Reglerteknik</subject><subject>Satellite navigation systems</subject><subject>Statistical signal processing</subject><subject>Studies</subject><subject>Target tracking</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>1053-587X</issn><issn>1941-0476</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LxDAQBuAiCurqwaun4kERtmuS5mu8id-woAcVbyGbpku0NmvSKv57s3Tx4EFPmfA-DMxMlu1hNMEYwYmQExCyBL6WbWGguEBU8PVUI1YWTIrnzWw7xheEMKXAt7LTex06Zxqb167pbIh57UO-8NF1zreunY_zVn-4uV5-x7luq7wL2rymZCfbqHUT7e7qHWWPV5cP5zfF9O769vxsWhgmRFfUlZGiFEayWUXsTILhCABXIDTjiGlkONPSEslSUJUC2RqT2lBBgIIxthxl46Fv_LSLfqYWwb3p8KW8durCPZ0pH-aqcb0iwAlL_Gjgi-Dfexs79eaisU2jW-v7qAAJ4IySMsnDPyUBhDni5H8oKYCg_H8oeNoJWXY8-AVffB_atEYlJS0BEbFExwMywccYbP0zOkZqeW0lpBqunez-YJ219setwm--cKLk</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Gustafsson, F.</creator><creator>Gunnarsson, F.</creator><creator>Bergman, N.</creator><creator>Forssell, U.</creator><creator>Jansson, J.</creator><creator>Karlsson, R.</creator><creator>Nordlund, P.-J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20020201</creationdate><title>Particle filters for positioning, navigation, and tracking</title><author>Gustafsson, F. ; Gunnarsson, F. ; Bergman, N. ; Forssell, U. ; Jansson, J. ; Karlsson, R. ; Nordlund, P.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-fdc8737c85bd2eb89c60991d97a5605a0c65a8e285c60d370ef12fc472949cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accuracy</topic><topic>Aircraft</topic><topic>Aircraft components</topic><topic>Aircraft navigation</topic><topic>Applications</topic><topic>Automatic control</topic><topic>Automotive engineering</topic><topic>Bayesian estimation</topic><topic>Global Positioning System</topic><topic>Information technology</topic><topic>Informationsteknik</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Motion measurement</topic><topic>Navigation</topic><topic>Nonlinear equations</topic><topic>Particle filters</topic><topic>Particle tracking</topic><topic>Position measurement</topic><topic>Positioning</topic><topic>Reglerteknik</topic><topic>Satellite navigation systems</topic><topic>Statistical signal processing</topic><topic>Studies</topic><topic>Target tracking</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gustafsson, F.</creatorcontrib><creatorcontrib>Gunnarsson, F.</creatorcontrib><creatorcontrib>Bergman, N.</creatorcontrib><creatorcontrib>Forssell, U.</creatorcontrib><creatorcontrib>Jansson, J.</creatorcontrib><creatorcontrib>Karlsson, R.</creatorcontrib><creatorcontrib>Nordlund, P.-J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gustafsson, F.</au><au>Gunnarsson, F.</au><au>Bergman, N.</au><au>Forssell, U.</au><au>Jansson, J.</au><au>Karlsson, R.</au><au>Nordlund, P.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle filters for positioning, navigation, and tracking</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2002-02-01</date><risdate>2002</risdate><volume>50</volume><issue>2</issue><spage>425</spage><epage>437</epage><pages>425-437</pages><issn>1053-587X</issn><issn>1941-0476</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/78.978396</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2002-02, Vol.50 (2), p.425-437 |
issn | 1053-587X 1941-0476 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_28499746 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Aircraft Aircraft components Aircraft navigation Applications Automatic control Automotive engineering Bayesian estimation Global Positioning System Information technology Informationsteknik Kalman filters Mathematical models Monte Carlo methods Motion measurement Navigation Nonlinear equations Particle filters Particle tracking Position measurement Positioning Reglerteknik Satellite navigation systems Statistical signal processing Studies Target tracking TECHNOLOGY TEKNIKVETENSKAP |
title | Particle filters for positioning, navigation, and tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20filters%20for%20positioning,%20navigation,%20and%20tracking&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Gustafsson,%20F.&rft.date=2002-02-01&rft.volume=50&rft.issue=2&rft.spage=425&rft.epage=437&rft.pages=425-437&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.978396&rft_dat=%3Cproquest_RIE%3E2430263281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884390272&rft_id=info:pmid/&rft_ieee_id=978396&rfr_iscdi=true |