Comparison of different cubic equations of state and combination rules for predicting residual chemical potential of binary and ternary Lennard–Jones mixtures: Solid-supercritical fluid phase equilibria

Molecular simulation data of binary and ternary mixtures were used to study the capability of cubic equations of state (CEOS), Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), and Peng–Robinson (PR), to predict the residual chemical potential of a heavy solid compound in a supercritical fluid when mol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid phase equilibria 2005-07, Vol.234 (1), p.42-50
Hauptverfasser: Cañas-Marín, Wilson A., Guerrero-Aconcha, Uriel E., Ortiz-Arango, Julián D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 42
container_title Fluid phase equilibria
container_volume 234
creator Cañas-Marín, Wilson A.
Guerrero-Aconcha, Uriel E.
Ortiz-Arango, Julián D.
description Molecular simulation data of binary and ternary mixtures were used to study the capability of cubic equations of state (CEOS), Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), and Peng–Robinson (PR), to predict the residual chemical potential of a heavy solid compound in a supercritical fluid when molecules interact each other with a simple Lennard–Jones (LJ) potential. The chemical potential of the solid compound is calculated directly from the Lennard–Jones parameters of the involved molecules. It was found that if appropriate combination rules are used, van der Waals one fluid theory (vdW-1f) allows CEOS to reproduce accurately the molecular simulation data without any adjustable parameter, even if asymmetries in molecular size and energy are considerable. For the supercritical binary systems analyzed in this work, it was observed that the relation of the parameters of energy influences more the performance of vdW-1f theory (and as a consequence the performance of the CEOS), than the relation of the parameters of size.
doi_str_mv 10.1016/j.fluid.2005.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28497707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378381205001810</els_id><sourcerecordid>28497707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-eb5fec15a6a4c55cf81dacc909f86455043916e266cbc693c3eaad0540d6df213</originalsourceid><addsrcrecordid>eNp9kc2qFDEQhRtRcLz6BG6y0V2PSf9kugUXMlz_GHChrkO6UvHW0J30TdKiO9_B1_IpfBLTPRfcCQV1oOp8yaGK4qnge8GFfHHe23Ehs684b_drieZesRPdoS95VTX3ix2vD11Zd6J6WDyK8cw5F62sdsXvo59mHSh6x7xlhqzFgC4xWAYChreLTuRdXIcx6YRMO8PATwO5bcLCMmJk1gc2BzQEidxXFjCSWfTI4AYngixmnzKWssqk1Rx-bKiEYdMndLmbPz9_ffAuAyf6npaMeck--ZFMGZcZAwRKG22Ly-YbHXH9I400BNKPiwdWjxGf3PWr4sub68_Hd-Xp49v3x9enEmrZpBKH1iKIVkvdQNuC7YTRAD3vbSebtuVN3QuJlZQwgOxrqFFrw9uGG2lsJeqr4vmFOwd_u2BMaqIIOI7aoV-iqrqmPxz4IS_Wl0UIPsaAVs2BphxXCa7Wy6mz2qKo9XJqLdFk17M7vI45rA3aAcV_Vtn3Vdev9FeXPcxZvxEGFYHQQb5CQEjKePrvO38BmhK4BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28497707</pqid></control><display><type>article</type><title>Comparison of different cubic equations of state and combination rules for predicting residual chemical potential of binary and ternary Lennard–Jones mixtures: Solid-supercritical fluid phase equilibria</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cañas-Marín, Wilson A. ; Guerrero-Aconcha, Uriel E. ; Ortiz-Arango, Julián D.</creator><creatorcontrib>Cañas-Marín, Wilson A. ; Guerrero-Aconcha, Uriel E. ; Ortiz-Arango, Julián D.</creatorcontrib><description>Molecular simulation data of binary and ternary mixtures were used to study the capability of cubic equations of state (CEOS), Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), and Peng–Robinson (PR), to predict the residual chemical potential of a heavy solid compound in a supercritical fluid when molecules interact each other with a simple Lennard–Jones (LJ) potential. The chemical potential of the solid compound is calculated directly from the Lennard–Jones parameters of the involved molecules. It was found that if appropriate combination rules are used, van der Waals one fluid theory (vdW-1f) allows CEOS to reproduce accurately the molecular simulation data without any adjustable parameter, even if asymmetries in molecular size and energy are considerable. For the supercritical binary systems analyzed in this work, it was observed that the relation of the parameters of energy influences more the performance of vdW-1f theory (and as a consequence the performance of the CEOS), than the relation of the parameters of size.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/j.fluid.2005.05.014</identifier><identifier>CODEN: FPEQDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemistry ; Combination rules ; Cubic equations of state ; Exact sciences and technology ; General and physical chemistry ; Lennard–Jones mixtures ; Phase equilibria ; Residual chemical potential ; Supercritical fluids</subject><ispartof>Fluid phase equilibria, 2005-07, Vol.234 (1), p.42-50</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-eb5fec15a6a4c55cf81dacc909f86455043916e266cbc693c3eaad0540d6df213</citedby><cites>FETCH-LOGICAL-c364t-eb5fec15a6a4c55cf81dacc909f86455043916e266cbc693c3eaad0540d6df213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fluid.2005.05.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16992897$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cañas-Marín, Wilson A.</creatorcontrib><creatorcontrib>Guerrero-Aconcha, Uriel E.</creatorcontrib><creatorcontrib>Ortiz-Arango, Julián D.</creatorcontrib><title>Comparison of different cubic equations of state and combination rules for predicting residual chemical potential of binary and ternary Lennard–Jones mixtures: Solid-supercritical fluid phase equilibria</title><title>Fluid phase equilibria</title><description>Molecular simulation data of binary and ternary mixtures were used to study the capability of cubic equations of state (CEOS), Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), and Peng–Robinson (PR), to predict the residual chemical potential of a heavy solid compound in a supercritical fluid when molecules interact each other with a simple Lennard–Jones (LJ) potential. The chemical potential of the solid compound is calculated directly from the Lennard–Jones parameters of the involved molecules. It was found that if appropriate combination rules are used, van der Waals one fluid theory (vdW-1f) allows CEOS to reproduce accurately the molecular simulation data without any adjustable parameter, even if asymmetries in molecular size and energy are considerable. For the supercritical binary systems analyzed in this work, it was observed that the relation of the parameters of energy influences more the performance of vdW-1f theory (and as a consequence the performance of the CEOS), than the relation of the parameters of size.</description><subject>Chemistry</subject><subject>Combination rules</subject><subject>Cubic equations of state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Lennard–Jones mixtures</subject><subject>Phase equilibria</subject><subject>Residual chemical potential</subject><subject>Supercritical fluids</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kc2qFDEQhRtRcLz6BG6y0V2PSf9kugUXMlz_GHChrkO6UvHW0J30TdKiO9_B1_IpfBLTPRfcCQV1oOp8yaGK4qnge8GFfHHe23Ehs684b_drieZesRPdoS95VTX3ix2vD11Zd6J6WDyK8cw5F62sdsXvo59mHSh6x7xlhqzFgC4xWAYChreLTuRdXIcx6YRMO8PATwO5bcLCMmJk1gc2BzQEidxXFjCSWfTI4AYngixmnzKWssqk1Rx-bKiEYdMndLmbPz9_ffAuAyf6npaMeck--ZFMGZcZAwRKG22Ly-YbHXH9I400BNKPiwdWjxGf3PWr4sub68_Hd-Xp49v3x9enEmrZpBKH1iKIVkvdQNuC7YTRAD3vbSebtuVN3QuJlZQwgOxrqFFrw9uGG2lsJeqr4vmFOwd_u2BMaqIIOI7aoV-iqrqmPxz4IS_Wl0UIPsaAVs2BphxXCa7Wy6mz2qKo9XJqLdFk17M7vI45rA3aAcV_Vtn3Vdev9FeXPcxZvxEGFYHQQb5CQEjKePrvO38BmhK4BA</recordid><startdate>20050728</startdate><enddate>20050728</enddate><creator>Cañas-Marín, Wilson A.</creator><creator>Guerrero-Aconcha, Uriel E.</creator><creator>Ortiz-Arango, Julián D.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20050728</creationdate><title>Comparison of different cubic equations of state and combination rules for predicting residual chemical potential of binary and ternary Lennard–Jones mixtures: Solid-supercritical fluid phase equilibria</title><author>Cañas-Marín, Wilson A. ; Guerrero-Aconcha, Uriel E. ; Ortiz-Arango, Julián D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-eb5fec15a6a4c55cf81dacc909f86455043916e266cbc693c3eaad0540d6df213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemistry</topic><topic>Combination rules</topic><topic>Cubic equations of state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Lennard–Jones mixtures</topic><topic>Phase equilibria</topic><topic>Residual chemical potential</topic><topic>Supercritical fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cañas-Marín, Wilson A.</creatorcontrib><creatorcontrib>Guerrero-Aconcha, Uriel E.</creatorcontrib><creatorcontrib>Ortiz-Arango, Julián D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cañas-Marín, Wilson A.</au><au>Guerrero-Aconcha, Uriel E.</au><au>Ortiz-Arango, Julián D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of different cubic equations of state and combination rules for predicting residual chemical potential of binary and ternary Lennard–Jones mixtures: Solid-supercritical fluid phase equilibria</atitle><jtitle>Fluid phase equilibria</jtitle><date>2005-07-28</date><risdate>2005</risdate><volume>234</volume><issue>1</issue><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>0378-3812</issn><eissn>1879-0224</eissn><coden>FPEQDT</coden><abstract>Molecular simulation data of binary and ternary mixtures were used to study the capability of cubic equations of state (CEOS), Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), and Peng–Robinson (PR), to predict the residual chemical potential of a heavy solid compound in a supercritical fluid when molecules interact each other with a simple Lennard–Jones (LJ) potential. The chemical potential of the solid compound is calculated directly from the Lennard–Jones parameters of the involved molecules. It was found that if appropriate combination rules are used, van der Waals one fluid theory (vdW-1f) allows CEOS to reproduce accurately the molecular simulation data without any adjustable parameter, even if asymmetries in molecular size and energy are considerable. For the supercritical binary systems analyzed in this work, it was observed that the relation of the parameters of energy influences more the performance of vdW-1f theory (and as a consequence the performance of the CEOS), than the relation of the parameters of size.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fluid.2005.05.014</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-3812
ispartof Fluid phase equilibria, 2005-07, Vol.234 (1), p.42-50
issn 0378-3812
1879-0224
language eng
recordid cdi_proquest_miscellaneous_28497707
source Access via ScienceDirect (Elsevier)
subjects Chemistry
Combination rules
Cubic equations of state
Exact sciences and technology
General and physical chemistry
Lennard–Jones mixtures
Phase equilibria
Residual chemical potential
Supercritical fluids
title Comparison of different cubic equations of state and combination rules for predicting residual chemical potential of binary and ternary Lennard–Jones mixtures: Solid-supercritical fluid phase equilibria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20different%20cubic%20equations%20of%20state%20and%20combination%20rules%20for%20predicting%20residual%20chemical%20potential%20of%20binary%20and%20ternary%20Lennard%E2%80%93Jones%20mixtures:%20Solid-supercritical%20fluid%20phase%20equilibria&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Ca%C3%B1as-Mar%C3%ADn,%20Wilson%20A.&rft.date=2005-07-28&rft.volume=234&rft.issue=1&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=0378-3812&rft.eissn=1879-0224&rft.coden=FPEQDT&rft_id=info:doi/10.1016/j.fluid.2005.05.014&rft_dat=%3Cproquest_cross%3E28497707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28497707&rft_id=info:pmid/&rft_els_id=S0378381205001810&rfr_iscdi=true