Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model
We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo frame...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2004-10, Vol.87 (10), p.1821-1830 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1830 |
---|---|
container_issue | 10 |
container_start_page | 1821 |
container_title | Journal of the American Ceramic Society |
container_volume | 87 |
creator | Krishnamurthy, R. Yoon, Y.-G. Srolovitz, D. J. Car, R. |
description | We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo framework to calculate long‐time oxygen diffusivities. Simulation results show that the oxygen diffusivity attains a maximum value at around 0.1 mole fraction yttria. This variation in the oxygen diffusivity with yttria mole fraction and the calculated values for the diffusivity agree well with experiment. The competing effects of increased oxygen vacancy concentration and increasing activation energy and correlation effects for oxygen diffusion with increasing yttria mole fraction are responsible for the observed dopant content dependence of the oxygen diffusivity. We provide a detailed analysis of cation‐dopant‐induced correlation effects in support of the above explanation. |
doi_str_mv | 10.1111/j.1151-2916.2004.tb06325.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28495748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28495748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5411-7eabe9e0080ba9d270b2338c6af00d2cb59b9d1e709e7f1258792e23cfdc51113</originalsourceid><addsrcrecordid>eNqVkctu2zAQRYkgBeKk_QchQLuTO6REUcwqhvNomtciLop0M6CoUUBXllJSQux-fSTYSIGuWm4GxBzeO8PL2DGHKR_O5-VQJI-F5tlUAKTTroAsEXK63mMTLnetfTYBABGrXMABOwxhOVy5ztMJu7hfb56oic5cVfXBtU3kmuix67wz8UNnCle731RGP5y3bePMSTSL7uglenCrvjbdyN-2JdXv2bvK1IE-7OoR-3Zxvph_iW_uL6_ms5vYypTzWJEpSBNADoXRpVBQiCTJbWYqgFLYQupCl5wUaFIVFzJXWpBIbFVaOeybHLFPW91n3_7qKXS4csFSXZuG2j6gyFMtVZr_G5hKOYDHf4HLtvfNsAQKrjRXIEfbky1kfRuCpwqfvVsZv0EOOAaBSxyDwPG3cQwCd0Hgenj8cedggjV15U1jXfijkAmuUzGOfLrlXlxNm_9wwK-z-TnPxThnvJVwoaP1m4TxPzFTiZL4_e4SrxfX87PbbIGQvALQr6q3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217917051</pqid></control><display><type>article</type><title>Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model</title><source>Wiley Online Library All Journals</source><creator>Krishnamurthy, R. ; Yoon, Y.-G. ; Srolovitz, D. J. ; Car, R.</creator><creatorcontrib>Krishnamurthy, R. ; Yoon, Y.-G. ; Srolovitz, D. J. ; Car, R.</creatorcontrib><description>We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo framework to calculate long‐time oxygen diffusivities. Simulation results show that the oxygen diffusivity attains a maximum value at around 0.1 mole fraction yttria. This variation in the oxygen diffusivity with yttria mole fraction and the calculated values for the diffusivity agree well with experiment. The competing effects of increased oxygen vacancy concentration and increasing activation energy and correlation effects for oxygen diffusion with increasing yttria mole fraction are responsible for the observed dopant content dependence of the oxygen diffusivity. We provide a detailed analysis of cation‐dopant‐induced correlation effects in support of the above explanation.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.2004.tb06325.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Diffusion ; Diffusion in solids ; diffusion/diffusivity ; Exact sciences and technology ; Oxygen ; Physics ; Simulation ; Theory of diffusion and ionic conduction in solids ; Transport properties of condensed matter (nonelectronic) ; yttria stabilized ; zirconia ; Zirconium</subject><ispartof>Journal of the American Ceramic Society, 2004-10, Vol.87 (10), p.1821-1830</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Ceramic Society Oct 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5411-7eabe9e0080ba9d270b2338c6af00d2cb59b9d1e709e7f1258792e23cfdc51113</citedby><cites>FETCH-LOGICAL-c5411-7eabe9e0080ba9d270b2338c6af00d2cb59b9d1e709e7f1258792e23cfdc51113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.2004.tb06325.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.2004.tb06325.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16219428$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnamurthy, R.</creatorcontrib><creatorcontrib>Yoon, Y.-G.</creatorcontrib><creatorcontrib>Srolovitz, D. J.</creatorcontrib><creatorcontrib>Car, R.</creatorcontrib><title>Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model</title><title>Journal of the American Ceramic Society</title><description>We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo framework to calculate long‐time oxygen diffusivities. Simulation results show that the oxygen diffusivity attains a maximum value at around 0.1 mole fraction yttria. This variation in the oxygen diffusivity with yttria mole fraction and the calculated values for the diffusivity agree well with experiment. The competing effects of increased oxygen vacancy concentration and increasing activation energy and correlation effects for oxygen diffusion with increasing yttria mole fraction are responsible for the observed dopant content dependence of the oxygen diffusivity. We provide a detailed analysis of cation‐dopant‐induced correlation effects in support of the above explanation.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion</subject><subject>Diffusion in solids</subject><subject>diffusion/diffusivity</subject><subject>Exact sciences and technology</subject><subject>Oxygen</subject><subject>Physics</subject><subject>Simulation</subject><subject>Theory of diffusion and ionic conduction in solids</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>yttria stabilized</subject><subject>zirconia</subject><subject>Zirconium</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqVkctu2zAQRYkgBeKk_QchQLuTO6REUcwqhvNomtciLop0M6CoUUBXllJSQux-fSTYSIGuWm4GxBzeO8PL2DGHKR_O5-VQJI-F5tlUAKTTroAsEXK63mMTLnetfTYBABGrXMABOwxhOVy5ztMJu7hfb56oic5cVfXBtU3kmuix67wz8UNnCle731RGP5y3bePMSTSL7uglenCrvjbdyN-2JdXv2bvK1IE-7OoR-3Zxvph_iW_uL6_ms5vYypTzWJEpSBNADoXRpVBQiCTJbWYqgFLYQupCl5wUaFIVFzJXWpBIbFVaOeybHLFPW91n3_7qKXS4csFSXZuG2j6gyFMtVZr_G5hKOYDHf4HLtvfNsAQKrjRXIEfbky1kfRuCpwqfvVsZv0EOOAaBSxyDwPG3cQwCd0Hgenj8cedggjV15U1jXfijkAmuUzGOfLrlXlxNm_9wwK-z-TnPxThnvJVwoaP1m4TxPzFTiZL4_e4SrxfX87PbbIGQvALQr6q3</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Krishnamurthy, R.</creator><creator>Yoon, Y.-G.</creator><creator>Srolovitz, D. J.</creator><creator>Car, R.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SC</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200410</creationdate><title>Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model</title><author>Krishnamurthy, R. ; Yoon, Y.-G. ; Srolovitz, D. J. ; Car, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5411-7eabe9e0080ba9d270b2338c6af00d2cb59b9d1e709e7f1258792e23cfdc51113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion</topic><topic>Diffusion in solids</topic><topic>diffusion/diffusivity</topic><topic>Exact sciences and technology</topic><topic>Oxygen</topic><topic>Physics</topic><topic>Simulation</topic><topic>Theory of diffusion and ionic conduction in solids</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>yttria stabilized</topic><topic>zirconia</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, R.</creatorcontrib><creatorcontrib>Yoon, Y.-G.</creatorcontrib><creatorcontrib>Srolovitz, D. J.</creatorcontrib><creatorcontrib>Car, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamurthy, R.</au><au>Yoon, Y.-G.</au><au>Srolovitz, D. J.</au><au>Car, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2004-10</date><risdate>2004</risdate><volume>87</volume><issue>10</issue><spage>1821</spage><epage>1830</epage><pages>1821-1830</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo framework to calculate long‐time oxygen diffusivities. Simulation results show that the oxygen diffusivity attains a maximum value at around 0.1 mole fraction yttria. This variation in the oxygen diffusivity with yttria mole fraction and the calculated values for the diffusivity agree well with experiment. The competing effects of increased oxygen vacancy concentration and increasing activation energy and correlation effects for oxygen diffusion with increasing yttria mole fraction are responsible for the observed dopant content dependence of the oxygen diffusivity. We provide a detailed analysis of cation‐dopant‐induced correlation effects in support of the above explanation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.2004.tb06325.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2004-10, Vol.87 (10), p.1821-1830 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_28495748 |
source | Wiley Online Library All Journals |
subjects | Condensed matter: structure, mechanical and thermal properties Diffusion Diffusion in solids diffusion/diffusivity Exact sciences and technology Oxygen Physics Simulation Theory of diffusion and ionic conduction in solids Transport properties of condensed matter (nonelectronic) yttria stabilized zirconia Zirconium |
title | Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Diffusion%20in%20Yttria-Stabilized%20Zirconia:%20A%20New%20Simulation%20Model&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Krishnamurthy,%20R.&rft.date=2004-10&rft.volume=87&rft.issue=10&rft.spage=1821&rft.epage=1830&rft.pages=1821-1830&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.2004.tb06325.x&rft_dat=%3Cproquest_cross%3E28495748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217917051&rft_id=info:pmid/&rfr_iscdi=true |