Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model

We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo frame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2004-10, Vol.87 (10), p.1821-1830
Hauptverfasser: Krishnamurthy, R., Yoon, Y.-G., Srolovitz, D. J., Car, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1830
container_issue 10
container_start_page 1821
container_title Journal of the American Ceramic Society
container_volume 87
creator Krishnamurthy, R.
Yoon, Y.-G.
Srolovitz, D. J.
Car, R.
description We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo framework to calculate long‐time oxygen diffusivities. Simulation results show that the oxygen diffusivity attains a maximum value at around 0.1 mole fraction yttria. This variation in the oxygen diffusivity with yttria mole fraction and the calculated values for the diffusivity agree well with experiment. The competing effects of increased oxygen vacancy concentration and increasing activation energy and correlation effects for oxygen diffusion with increasing yttria mole fraction are responsible for the observed dopant content dependence of the oxygen diffusivity. We provide a detailed analysis of cation‐dopant‐induced correlation effects in support of the above explanation.
doi_str_mv 10.1111/j.1151-2916.2004.tb06325.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28495748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28495748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5411-7eabe9e0080ba9d270b2338c6af00d2cb59b9d1e709e7f1258792e23cfdc51113</originalsourceid><addsrcrecordid>eNqVkctu2zAQRYkgBeKk_QchQLuTO6REUcwqhvNomtciLop0M6CoUUBXllJSQux-fSTYSIGuWm4GxBzeO8PL2DGHKR_O5-VQJI-F5tlUAKTTroAsEXK63mMTLnetfTYBABGrXMABOwxhOVy5ztMJu7hfb56oic5cVfXBtU3kmuix67wz8UNnCle731RGP5y3bePMSTSL7uglenCrvjbdyN-2JdXv2bvK1IE-7OoR-3Zxvph_iW_uL6_ms5vYypTzWJEpSBNADoXRpVBQiCTJbWYqgFLYQupCl5wUaFIVFzJXWpBIbFVaOeybHLFPW91n3_7qKXS4csFSXZuG2j6gyFMtVZr_G5hKOYDHf4HLtvfNsAQKrjRXIEfbky1kfRuCpwqfvVsZv0EOOAaBSxyDwPG3cQwCd0Hgenj8cedggjV15U1jXfijkAmuUzGOfLrlXlxNm_9wwK-z-TnPxThnvJVwoaP1m4TxPzFTiZL4_e4SrxfX87PbbIGQvALQr6q3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217917051</pqid></control><display><type>article</type><title>Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model</title><source>Wiley Online Library All Journals</source><creator>Krishnamurthy, R. ; Yoon, Y.-G. ; Srolovitz, D. J. ; Car, R.</creator><creatorcontrib>Krishnamurthy, R. ; Yoon, Y.-G. ; Srolovitz, D. J. ; Car, R.</creatorcontrib><description>We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo framework to calculate long‐time oxygen diffusivities. Simulation results show that the oxygen diffusivity attains a maximum value at around 0.1 mole fraction yttria. This variation in the oxygen diffusivity with yttria mole fraction and the calculated values for the diffusivity agree well with experiment. The competing effects of increased oxygen vacancy concentration and increasing activation energy and correlation effects for oxygen diffusion with increasing yttria mole fraction are responsible for the observed dopant content dependence of the oxygen diffusivity. We provide a detailed analysis of cation‐dopant‐induced correlation effects in support of the above explanation.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.2004.tb06325.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Diffusion ; Diffusion in solids ; diffusion/diffusivity ; Exact sciences and technology ; Oxygen ; Physics ; Simulation ; Theory of diffusion and ionic conduction in solids ; Transport properties of condensed matter (nonelectronic) ; yttria stabilized ; zirconia ; Zirconium</subject><ispartof>Journal of the American Ceramic Society, 2004-10, Vol.87 (10), p.1821-1830</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Ceramic Society Oct 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5411-7eabe9e0080ba9d270b2338c6af00d2cb59b9d1e709e7f1258792e23cfdc51113</citedby><cites>FETCH-LOGICAL-c5411-7eabe9e0080ba9d270b2338c6af00d2cb59b9d1e709e7f1258792e23cfdc51113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.2004.tb06325.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.2004.tb06325.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16219428$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnamurthy, R.</creatorcontrib><creatorcontrib>Yoon, Y.-G.</creatorcontrib><creatorcontrib>Srolovitz, D. J.</creatorcontrib><creatorcontrib>Car, R.</creatorcontrib><title>Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model</title><title>Journal of the American Ceramic Society</title><description>We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo framework to calculate long‐time oxygen diffusivities. Simulation results show that the oxygen diffusivity attains a maximum value at around 0.1 mole fraction yttria. This variation in the oxygen diffusivity with yttria mole fraction and the calculated values for the diffusivity agree well with experiment. The competing effects of increased oxygen vacancy concentration and increasing activation energy and correlation effects for oxygen diffusion with increasing yttria mole fraction are responsible for the observed dopant content dependence of the oxygen diffusivity. We provide a detailed analysis of cation‐dopant‐induced correlation effects in support of the above explanation.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion</subject><subject>Diffusion in solids</subject><subject>diffusion/diffusivity</subject><subject>Exact sciences and technology</subject><subject>Oxygen</subject><subject>Physics</subject><subject>Simulation</subject><subject>Theory of diffusion and ionic conduction in solids</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>yttria stabilized</subject><subject>zirconia</subject><subject>Zirconium</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqVkctu2zAQRYkgBeKk_QchQLuTO6REUcwqhvNomtciLop0M6CoUUBXllJSQux-fSTYSIGuWm4GxBzeO8PL2DGHKR_O5-VQJI-F5tlUAKTTroAsEXK63mMTLnetfTYBABGrXMABOwxhOVy5ztMJu7hfb56oic5cVfXBtU3kmuix67wz8UNnCle731RGP5y3bePMSTSL7uglenCrvjbdyN-2JdXv2bvK1IE-7OoR-3Zxvph_iW_uL6_ms5vYypTzWJEpSBNADoXRpVBQiCTJbWYqgFLYQupCl5wUaFIVFzJXWpBIbFVaOeybHLFPW91n3_7qKXS4csFSXZuG2j6gyFMtVZr_G5hKOYDHf4HLtvfNsAQKrjRXIEfbky1kfRuCpwqfvVsZv0EOOAaBSxyDwPG3cQwCd0Hgenj8cedggjV15U1jXfijkAmuUzGOfLrlXlxNm_9wwK-z-TnPxThnvJVwoaP1m4TxPzFTiZL4_e4SrxfX87PbbIGQvALQr6q3</recordid><startdate>200410</startdate><enddate>200410</enddate><creator>Krishnamurthy, R.</creator><creator>Yoon, Y.-G.</creator><creator>Srolovitz, D. J.</creator><creator>Car, R.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SC</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200410</creationdate><title>Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model</title><author>Krishnamurthy, R. ; Yoon, Y.-G. ; Srolovitz, D. J. ; Car, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5411-7eabe9e0080ba9d270b2338c6af00d2cb59b9d1e709e7f1258792e23cfdc51113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion</topic><topic>Diffusion in solids</topic><topic>diffusion/diffusivity</topic><topic>Exact sciences and technology</topic><topic>Oxygen</topic><topic>Physics</topic><topic>Simulation</topic><topic>Theory of diffusion and ionic conduction in solids</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>yttria stabilized</topic><topic>zirconia</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, R.</creatorcontrib><creatorcontrib>Yoon, Y.-G.</creatorcontrib><creatorcontrib>Srolovitz, D. J.</creatorcontrib><creatorcontrib>Car, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamurthy, R.</au><au>Yoon, Y.-G.</au><au>Srolovitz, D. J.</au><au>Car, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2004-10</date><risdate>2004</risdate><volume>87</volume><issue>10</issue><spage>1821</spage><epage>1830</epage><pages>1821-1830</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>We present a multiscale modeling approach to study oxygen diffusion in cubic yttria‐stabilized zirconia. In this approach, we employ density functional theory methods to calculate activation energies for oxygen migration in different cation environments. These are used in a kinetic Monte Carlo framework to calculate long‐time oxygen diffusivities. Simulation results show that the oxygen diffusivity attains a maximum value at around 0.1 mole fraction yttria. This variation in the oxygen diffusivity with yttria mole fraction and the calculated values for the diffusivity agree well with experiment. The competing effects of increased oxygen vacancy concentration and increasing activation energy and correlation effects for oxygen diffusion with increasing yttria mole fraction are responsible for the observed dopant content dependence of the oxygen diffusivity. We provide a detailed analysis of cation‐dopant‐induced correlation effects in support of the above explanation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.2004.tb06325.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2004-10, Vol.87 (10), p.1821-1830
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_28495748
source Wiley Online Library All Journals
subjects Condensed matter: structure, mechanical and thermal properties
Diffusion
Diffusion in solids
diffusion/diffusivity
Exact sciences and technology
Oxygen
Physics
Simulation
Theory of diffusion and ionic conduction in solids
Transport properties of condensed matter (nonelectronic)
yttria stabilized
zirconia
Zirconium
title Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Diffusion%20in%20Yttria-Stabilized%20Zirconia:%20A%20New%20Simulation%20Model&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Krishnamurthy,%20R.&rft.date=2004-10&rft.volume=87&rft.issue=10&rft.spage=1821&rft.epage=1830&rft.pages=1821-1830&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.2004.tb06325.x&rft_dat=%3Cproquest_cross%3E28495748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217917051&rft_id=info:pmid/&rfr_iscdi=true