Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane
Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-08, Vol.25 (33), p.2255-2262 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2262 |
---|---|
container_issue | 33 |
container_start_page | 2255 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Mi, Zhou Zhou, Wenyu Yang, Hong Cao, Luoxia Li, Ming Zhou, Yang |
description | Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse (
I
), bubble diameter (
D
) and arrays. The results show that all three factors can control the transport depth (Δ
D
PM
) of PTX. For a fixed
D
, the Δ
D
PM
grows exponentially with
I
, Δ
D
PM
∼ exp (
I
), and eventually reaches a critical depth. But the depth, Δ
D
PM
, can be adjusted linearly in a wider range of
D
. This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined
via
recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells.
Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. |
doi_str_mv | 10.1039/d3cp01722b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2848841220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854976064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-bcbcb2bd774502107f828223742d75fcbc91ac7bcbf7cc2f3e80b6d828d30a5a3</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3cl4EWEan61aY86f8JED3ouaZp2nWlTk3a6_97shxMkhwS-Hx557wFwjNElRjS5yqlsEeaEZDtgiFlEgwTFbHf75tEAHDg3QwjhENN9MKA8DCNC4iEwz0Yr2WthYW1ypXXVlNAU0E2N_PgScxXUKq9Ep3Lo02qu7GIZt0LqqhPfSkNRllaVXjgopDXOwW6qYKN6axqhYauFqwWsVZ1Z0ahDsFcI7dTR5h6B9_u7t_FjMHl5eBpfTwJJkqgLMukPyXLOWYgIRryISUwI5YzkPCx8mmAhuUcFl5IUVMUoi3KPcopEKOgInK_rttZ89sp1aV056fvzfzC9S0nM4phhQpCnZ__ozPTW_32pQpbwCEXMq4u1WvVoVZG2tqqFXaQYpcs1pLd0_Lpaw43Hp5uSfebnt6W_c_fgZA2sk9v0b4_0B53Gji0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854976064</pqid></control><display><type>article</type><title>Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mi, Zhou ; Zhou, Wenyu ; Yang, Hong ; Cao, Luoxia ; Li, Ming ; Zhou, Yang</creator><creatorcontrib>Mi, Zhou ; Zhou, Wenyu ; Yang, Hong ; Cao, Luoxia ; Li, Ming ; Zhou, Yang</creatorcontrib><description>Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse (
I
), bubble diameter (
D
) and arrays. The results show that all three factors can control the transport depth (Δ
D
PM
) of PTX. For a fixed
D
, the Δ
D
PM
grows exponentially with
I
, Δ
D
PM
∼ exp (
I
), and eventually reaches a critical depth. But the depth, Δ
D
PM
, can be adjusted linearly in a wider range of
D
. This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined
via
recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells.
Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01722b</identifier><identifier>PMID: 37556228</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Arrays ; Blood-brain barrier ; Clusters ; Membranes ; Tumors</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (33), p.2255-2262</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-bcbcb2bd774502107f828223742d75fcbc91ac7bcbf7cc2f3e80b6d828d30a5a3</cites><orcidid>0000-0003-3055-6491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37556228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mi, Zhou</creatorcontrib><creatorcontrib>Zhou, Wenyu</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Cao, Luoxia</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><title>Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse (
I
), bubble diameter (
D
) and arrays. The results show that all three factors can control the transport depth (Δ
D
PM
) of PTX. For a fixed
D
, the Δ
D
PM
grows exponentially with
I
, Δ
D
PM
∼ exp (
I
), and eventually reaches a critical depth. But the depth, Δ
D
PM
, can be adjusted linearly in a wider range of
D
. This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined
via
recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells.
Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors.</description><subject>Arrays</subject><subject>Blood-brain barrier</subject><subject>Clusters</subject><subject>Membranes</subject><subject>Tumors</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3cl4EWEan61aY86f8JED3ouaZp2nWlTk3a6_97shxMkhwS-Hx557wFwjNElRjS5yqlsEeaEZDtgiFlEgwTFbHf75tEAHDg3QwjhENN9MKA8DCNC4iEwz0Yr2WthYW1ypXXVlNAU0E2N_PgScxXUKq9Ep3Lo02qu7GIZt0LqqhPfSkNRllaVXjgopDXOwW6qYKN6axqhYauFqwWsVZ1Z0ahDsFcI7dTR5h6B9_u7t_FjMHl5eBpfTwJJkqgLMukPyXLOWYgIRryISUwI5YzkPCx8mmAhuUcFl5IUVMUoi3KPcopEKOgInK_rttZ89sp1aV056fvzfzC9S0nM4phhQpCnZ__ozPTW_32pQpbwCEXMq4u1WvVoVZG2tqqFXaQYpcs1pLd0_Lpaw43Hp5uSfebnt6W_c_fgZA2sk9v0b4_0B53Gji0</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Mi, Zhou</creator><creator>Zhou, Wenyu</creator><creator>Yang, Hong</creator><creator>Cao, Luoxia</creator><creator>Li, Ming</creator><creator>Zhou, Yang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3055-6491</orcidid></search><sort><creationdate>20230823</creationdate><title>Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane</title><author>Mi, Zhou ; Zhou, Wenyu ; Yang, Hong ; Cao, Luoxia ; Li, Ming ; Zhou, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-bcbcb2bd774502107f828223742d75fcbc91ac7bcbf7cc2f3e80b6d828d30a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Blood-brain barrier</topic><topic>Clusters</topic><topic>Membranes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Zhou</creatorcontrib><creatorcontrib>Zhou, Wenyu</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Cao, Luoxia</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Zhou</au><au>Zhou, Wenyu</au><au>Yang, Hong</au><au>Cao, Luoxia</au><au>Li, Ming</au><au>Zhou, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-08-23</date><risdate>2023</risdate><volume>25</volume><issue>33</issue><spage>2255</spage><epage>2262</epage><pages>2255-2262</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse (
I
), bubble diameter (
D
) and arrays. The results show that all three factors can control the transport depth (Δ
D
PM
) of PTX. For a fixed
D
, the Δ
D
PM
grows exponentially with
I
, Δ
D
PM
∼ exp (
I
), and eventually reaches a critical depth. But the depth, Δ
D
PM
, can be adjusted linearly in a wider range of
D
. This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined
via
recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells.
Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37556228</pmid><doi>10.1039/d3cp01722b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3055-6491</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (33), p.2255-2262 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2848841220 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Arrays Blood-brain barrier Clusters Membranes Tumors |
title | Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20modelling%20of%20shockwave-mediated%20delivery%20of%20paclitaxel%20aggregates%20across%20the%20neuronal%20plasma%20membrane&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Mi,%20Zhou&rft.date=2023-08-23&rft.volume=25&rft.issue=33&rft.spage=2255&rft.epage=2262&rft.pages=2255-2262&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01722b&rft_dat=%3Cproquest_cross%3E2854976064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854976064&rft_id=info:pmid/37556228&rfr_iscdi=true |