Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane

Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-08, Vol.25 (33), p.2255-2262
Hauptverfasser: Mi, Zhou, Zhou, Wenyu, Yang, Hong, Cao, Luoxia, Li, Ming, Zhou, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2262
container_issue 33
container_start_page 2255
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Mi, Zhou
Zhou, Wenyu
Yang, Hong
Cao, Luoxia
Li, Ming
Zhou, Yang
description Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse ( I ), bubble diameter ( D ) and arrays. The results show that all three factors can control the transport depth (Δ D PM ) of PTX. For a fixed D , the Δ D PM grows exponentially with I , Δ D PM ∼ exp ( I ), and eventually reaches a critical depth. But the depth, Δ D PM , can be adjusted linearly in a wider range of D . This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined via recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells. Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors.
doi_str_mv 10.1039/d3cp01722b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2848841220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854976064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-bcbcb2bd774502107f828223742d75fcbc91ac7bcbf7cc2f3e80b6d828d30a5a3</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3cl4EWEan61aY86f8JED3ouaZp2nWlTk3a6_97shxMkhwS-Hx557wFwjNElRjS5yqlsEeaEZDtgiFlEgwTFbHf75tEAHDg3QwjhENN9MKA8DCNC4iEwz0Yr2WthYW1ypXXVlNAU0E2N_PgScxXUKq9Ep3Lo02qu7GIZt0LqqhPfSkNRllaVXjgopDXOwW6qYKN6axqhYauFqwWsVZ1Z0ahDsFcI7dTR5h6B9_u7t_FjMHl5eBpfTwJJkqgLMukPyXLOWYgIRryISUwI5YzkPCx8mmAhuUcFl5IUVMUoi3KPcopEKOgInK_rttZ89sp1aV056fvzfzC9S0nM4phhQpCnZ__ozPTW_32pQpbwCEXMq4u1WvVoVZG2tqqFXaQYpcs1pLd0_Lpaw43Hp5uSfebnt6W_c_fgZA2sk9v0b4_0B53Gji0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854976064</pqid></control><display><type>article</type><title>Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mi, Zhou ; Zhou, Wenyu ; Yang, Hong ; Cao, Luoxia ; Li, Ming ; Zhou, Yang</creator><creatorcontrib>Mi, Zhou ; Zhou, Wenyu ; Yang, Hong ; Cao, Luoxia ; Li, Ming ; Zhou, Yang</creatorcontrib><description>Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse ( I ), bubble diameter ( D ) and arrays. The results show that all three factors can control the transport depth (Δ D PM ) of PTX. For a fixed D , the Δ D PM grows exponentially with I , Δ D PM ∼ exp ( I ), and eventually reaches a critical depth. But the depth, Δ D PM , can be adjusted linearly in a wider range of D . This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined via recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells. Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01722b</identifier><identifier>PMID: 37556228</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Arrays ; Blood-brain barrier ; Clusters ; Membranes ; Tumors</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (33), p.2255-2262</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-bcbcb2bd774502107f828223742d75fcbc91ac7bcbf7cc2f3e80b6d828d30a5a3</cites><orcidid>0000-0003-3055-6491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37556228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mi, Zhou</creatorcontrib><creatorcontrib>Zhou, Wenyu</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Cao, Luoxia</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><title>Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse ( I ), bubble diameter ( D ) and arrays. The results show that all three factors can control the transport depth (Δ D PM ) of PTX. For a fixed D , the Δ D PM grows exponentially with I , Δ D PM ∼ exp ( I ), and eventually reaches a critical depth. But the depth, Δ D PM , can be adjusted linearly in a wider range of D . This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined via recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells. Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors.</description><subject>Arrays</subject><subject>Blood-brain barrier</subject><subject>Clusters</subject><subject>Membranes</subject><subject>Tumors</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3cl4EWEan61aY86f8JED3ouaZp2nWlTk3a6_97shxMkhwS-Hx557wFwjNElRjS5yqlsEeaEZDtgiFlEgwTFbHf75tEAHDg3QwjhENN9MKA8DCNC4iEwz0Yr2WthYW1ypXXVlNAU0E2N_PgScxXUKq9Ep3Lo02qu7GIZt0LqqhPfSkNRllaVXjgopDXOwW6qYKN6axqhYauFqwWsVZ1Z0ahDsFcI7dTR5h6B9_u7t_FjMHl5eBpfTwJJkqgLMukPyXLOWYgIRryISUwI5YzkPCx8mmAhuUcFl5IUVMUoi3KPcopEKOgInK_rttZ89sp1aV056fvzfzC9S0nM4phhQpCnZ__ozPTW_32pQpbwCEXMq4u1WvVoVZG2tqqFXaQYpcs1pLd0_Lpaw43Hp5uSfebnt6W_c_fgZA2sk9v0b4_0B53Gji0</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Mi, Zhou</creator><creator>Zhou, Wenyu</creator><creator>Yang, Hong</creator><creator>Cao, Luoxia</creator><creator>Li, Ming</creator><creator>Zhou, Yang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3055-6491</orcidid></search><sort><creationdate>20230823</creationdate><title>Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane</title><author>Mi, Zhou ; Zhou, Wenyu ; Yang, Hong ; Cao, Luoxia ; Li, Ming ; Zhou, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-bcbcb2bd774502107f828223742d75fcbc91ac7bcbf7cc2f3e80b6d828d30a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrays</topic><topic>Blood-brain barrier</topic><topic>Clusters</topic><topic>Membranes</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Zhou</creatorcontrib><creatorcontrib>Zhou, Wenyu</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Cao, Luoxia</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Zhou</au><au>Zhou, Wenyu</au><au>Yang, Hong</au><au>Cao, Luoxia</au><au>Li, Ming</au><au>Zhou, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-08-23</date><risdate>2023</risdate><volume>25</volume><issue>33</issue><spage>2255</spage><epage>2262</epage><pages>2255-2262</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors. Here, based on a realistically complex human brain plasma membrane (PM) model, we investigated the dynamic transmembrane behavior of a PTX cluster by shock induced bubble collapse, focusing on the effect of impulse ( I ), bubble diameter ( D ) and arrays. The results show that all three factors can control the transport depth (Δ D PM ) of PTX. For a fixed D , the Δ D PM grows exponentially with I , Δ D PM ∼ exp ( I ), and eventually reaches a critical depth. But the depth, Δ D PM , can be adjusted linearly in a wider range of D . This mainly depends on the size of jets from bubble collapse. For bubble arrays, the bubbles in series can transport PTX deeper than a single bubble, while the parallel does the opposite. In addition, only PTX clusters in the range of jet action can be successfully transported. Finally, the absorption of PTX clusters was examined via recovery simulation. Not all PTX clusters across the membrane can be effectively absorbed by cells. The shallow PTX clusters are quickly attracted by the membrane and embedded into it. The critical depth at which PTX clusters can be effectively absorbed is about 20 nm. These molecular-level mechanisms and dynamic processes of PTX clusters crossing the PM membrane may be helpful in optimizing the application of shock-induced bubble collapse for the delivery of PTX to tumor cells. Shock-assisted paclitaxel (PTX) transport across the blood-brain barrier offers a promising treatment strategy for brain tumors.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37556228</pmid><doi>10.1039/d3cp01722b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3055-6491</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (33), p.2255-2262
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2848841220
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Arrays
Blood-brain barrier
Clusters
Membranes
Tumors
title Molecular modelling of shockwave-mediated delivery of paclitaxel aggregates across the neuronal plasma membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20modelling%20of%20shockwave-mediated%20delivery%20of%20paclitaxel%20aggregates%20across%20the%20neuronal%20plasma%20membrane&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Mi,%20Zhou&rft.date=2023-08-23&rft.volume=25&rft.issue=33&rft.spage=2255&rft.epage=2262&rft.pages=2255-2262&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01722b&rft_dat=%3Cproquest_cross%3E2854976064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854976064&rft_id=info:pmid/37556228&rfr_iscdi=true