An automatic cloud-masking system using backpro neural nets for AVHRR scenes
The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud con...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2003-04, Vol.41 (4), p.826-831 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 831 |
---|---|
container_issue | 4 |
container_start_page | 826 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 41 |
creator | Arriaza, J.A.T. Rojas, F.G. Lopez, M.P. Canton, M. |
description | The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud contamination is the main producer of errors in deriving sea surface temperatures from remotely sensed data. Cloud masking is usually tackled as a statistical classification problem using threshold or texture-based information from satellite scenes. We attempt to construct an automatic cloud-masking system which uses heuristic knowledge about cloud features in Advanced Very High Resolution Radiometer scenes and artificial neural networks as classifiers. This system could be used as a preprocessing step in a future automatic oceanic feature identification system now being developed for the North Atlantic Ocean. The system has been compared with other traditional cloud mask methods to determine its accuracy. |
doi_str_mv | 10.1109/TGRS.2003.809930 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28484351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1202968</ieee_id><sourcerecordid>28985879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-5ce02ded9597f6ea7ff59c9387ce3902a8ef83c8030d53f99ac1846f2fbf1bd3</originalsourceid><addsrcrecordid>eNqNkstLAzEQxoMoWKt3wcsi-LhsnbyTYym-oCDU4nVJs4ms7kOT3YP_vVlaEDyIp2GY33zMfHwInWKYYQz6Zn2_ep4RADpToDWFPTTBnKscBGP7aAJYi5woTQ7RUYxvAJhxLCdoOW8zM_RdY_rKZrbuhjJvTHyv2tcsfsXeNdkQx2Zj7PtH6LLWDcHUqfQx813I5i8Pq1UWrWtdPEYH3tTRnezqFK3vbteLh3z5dP-4mC9zy6Toc24dkNKVmmvphTPSe66tpkpaRzUQo5xX1CqgUHLqtTYWKyY88RuPNyWdoqutbLrnc3CxL5oqHVDXpnXdEAulKFBMBU7k5Z9kMkRxJfU_QKYY5f9QlBokFaPi9Z8gFhwzxhkTCT3_hb51Q2iTg-kVRoFIAgmCLWRDF2NwvvgIVWPCV4GhGBNQjAkoxgQU2wSklYudronW1D6Y1lbxZ48pQaSUiTvbcpVz7mdMgGih6DcVjbe7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884302720</pqid></control><display><type>article</type><title>An automatic cloud-masking system using backpro neural nets for AVHRR scenes</title><source>IEEE Electronic Library (IEL)</source><creator>Arriaza, J.A.T. ; Rojas, F.G. ; Lopez, M.P. ; Canton, M.</creator><creatorcontrib>Arriaza, J.A.T. ; Rojas, F.G. ; Lopez, M.P. ; Canton, M.</creatorcontrib><description>The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud contamination is the main producer of errors in deriving sea surface temperatures from remotely sensed data. Cloud masking is usually tackled as a statistical classification problem using threshold or texture-based information from satellite scenes. We attempt to construct an automatic cloud-masking system which uses heuristic knowledge about cloud features in Advanced Very High Resolution Radiometer scenes and artificial neural networks as classifiers. This system could be used as a preprocessing step in a future automatic oceanic feature identification system now being developed for the North Atlantic Ocean. The system has been compared with other traditional cloud mask methods to determine its accuracy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2003.809930</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Automation ; Clouds ; Contamination ; Earth sciences ; Earth, ocean, space ; Error detection ; Exact sciences and technology ; Infrared imaging ; Internal geophysics ; Layout ; Masking ; Neural networks ; Ocean temperature ; Pattern recognition ; Pixel ; Preprocessing ; Remote sensing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2003-04, Vol.41 (4), p.826-831</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-5ce02ded9597f6ea7ff59c9387ce3902a8ef83c8030d53f99ac1846f2fbf1bd3</citedby><cites>FETCH-LOGICAL-c476t-5ce02ded9597f6ea7ff59c9387ce3902a8ef83c8030d53f99ac1846f2fbf1bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1202968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1202968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14862777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arriaza, J.A.T.</creatorcontrib><creatorcontrib>Rojas, F.G.</creatorcontrib><creatorcontrib>Lopez, M.P.</creatorcontrib><creatorcontrib>Canton, M.</creatorcontrib><title>An automatic cloud-masking system using backpro neural nets for AVHRR scenes</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud contamination is the main producer of errors in deriving sea surface temperatures from remotely sensed data. Cloud masking is usually tackled as a statistical classification problem using threshold or texture-based information from satellite scenes. We attempt to construct an automatic cloud-masking system which uses heuristic knowledge about cloud features in Advanced Very High Resolution Radiometer scenes and artificial neural networks as classifiers. This system could be used as a preprocessing step in a future automatic oceanic feature identification system now being developed for the North Atlantic Ocean. The system has been compared with other traditional cloud mask methods to determine its accuracy.</description><subject>Applied geophysics</subject><subject>Automation</subject><subject>Clouds</subject><subject>Contamination</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Error detection</subject><subject>Exact sciences and technology</subject><subject>Infrared imaging</subject><subject>Internal geophysics</subject><subject>Layout</subject><subject>Masking</subject><subject>Neural networks</subject><subject>Ocean temperature</subject><subject>Pattern recognition</subject><subject>Pixel</subject><subject>Preprocessing</subject><subject>Remote sensing</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkstLAzEQxoMoWKt3wcsi-LhsnbyTYym-oCDU4nVJs4ms7kOT3YP_vVlaEDyIp2GY33zMfHwInWKYYQz6Zn2_ep4RADpToDWFPTTBnKscBGP7aAJYi5woTQ7RUYxvAJhxLCdoOW8zM_RdY_rKZrbuhjJvTHyv2tcsfsXeNdkQx2Zj7PtH6LLWDcHUqfQx813I5i8Pq1UWrWtdPEYH3tTRnezqFK3vbteLh3z5dP-4mC9zy6Toc24dkNKVmmvphTPSe66tpkpaRzUQo5xX1CqgUHLqtTYWKyY88RuPNyWdoqutbLrnc3CxL5oqHVDXpnXdEAulKFBMBU7k5Z9kMkRxJfU_QKYY5f9QlBokFaPi9Z8gFhwzxhkTCT3_hb51Q2iTg-kVRoFIAgmCLWRDF2NwvvgIVWPCV4GhGBNQjAkoxgQU2wSklYudronW1D6Y1lbxZ48pQaSUiTvbcpVz7mdMgGih6DcVjbe7</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Arriaza, J.A.T.</creator><creator>Rojas, F.G.</creator><creator>Lopez, M.P.</creator><creator>Canton, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20030401</creationdate><title>An automatic cloud-masking system using backpro neural nets for AVHRR scenes</title><author>Arriaza, J.A.T. ; Rojas, F.G. ; Lopez, M.P. ; Canton, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-5ce02ded9597f6ea7ff59c9387ce3902a8ef83c8030d53f99ac1846f2fbf1bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied geophysics</topic><topic>Automation</topic><topic>Clouds</topic><topic>Contamination</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Error detection</topic><topic>Exact sciences and technology</topic><topic>Infrared imaging</topic><topic>Internal geophysics</topic><topic>Layout</topic><topic>Masking</topic><topic>Neural networks</topic><topic>Ocean temperature</topic><topic>Pattern recognition</topic><topic>Pixel</topic><topic>Preprocessing</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arriaza, J.A.T.</creatorcontrib><creatorcontrib>Rojas, F.G.</creatorcontrib><creatorcontrib>Lopez, M.P.</creatorcontrib><creatorcontrib>Canton, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arriaza, J.A.T.</au><au>Rojas, F.G.</au><au>Lopez, M.P.</au><au>Canton, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automatic cloud-masking system using backpro neural nets for AVHRR scenes</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2003-04-01</date><risdate>2003</risdate><volume>41</volume><issue>4</issue><spage>826</spage><epage>831</epage><pages>826-831</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud contamination is the main producer of errors in deriving sea surface temperatures from remotely sensed data. Cloud masking is usually tackled as a statistical classification problem using threshold or texture-based information from satellite scenes. We attempt to construct an automatic cloud-masking system which uses heuristic knowledge about cloud features in Advanced Very High Resolution Radiometer scenes and artificial neural networks as classifiers. This system could be used as a preprocessing step in a future automatic oceanic feature identification system now being developed for the North Atlantic Ocean. The system has been compared with other traditional cloud mask methods to determine its accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2003.809930</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2003-04, Vol.41 (4), p.826-831 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_28484351 |
source | IEEE Electronic Library (IEL) |
subjects | Applied geophysics Automation Clouds Contamination Earth sciences Earth, ocean, space Error detection Exact sciences and technology Infrared imaging Internal geophysics Layout Masking Neural networks Ocean temperature Pattern recognition Pixel Preprocessing Remote sensing |
title | An automatic cloud-masking system using backpro neural nets for AVHRR scenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automatic%20cloud-masking%20system%20using%20backpro%20neural%20nets%20for%20AVHRR%20scenes&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Arriaza,%20J.A.T.&rft.date=2003-04-01&rft.volume=41&rft.issue=4&rft.spage=826&rft.epage=831&rft.pages=826-831&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2003.809930&rft_dat=%3Cproquest_RIE%3E28985879%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884302720&rft_id=info:pmid/&rft_ieee_id=1202968&rfr_iscdi=true |