An automatic cloud-masking system using backpro neural nets for AVHRR scenes

The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2003-04, Vol.41 (4), p.826-831
Hauptverfasser: Arriaza, J.A.T., Rojas, F.G., Lopez, M.P., Canton, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 831
container_issue 4
container_start_page 826
container_title IEEE transactions on geoscience and remote sensing
container_volume 41
creator Arriaza, J.A.T.
Rojas, F.G.
Lopez, M.P.
Canton, M.
description The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud contamination is the main producer of errors in deriving sea surface temperatures from remotely sensed data. Cloud masking is usually tackled as a statistical classification problem using threshold or texture-based information from satellite scenes. We attempt to construct an automatic cloud-masking system which uses heuristic knowledge about cloud features in Advanced Very High Resolution Radiometer scenes and artificial neural networks as classifiers. This system could be used as a preprocessing step in a future automatic oceanic feature identification system now being developed for the North Atlantic Ocean. The system has been compared with other traditional cloud mask methods to determine its accuracy.
doi_str_mv 10.1109/TGRS.2003.809930
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28484351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1202968</ieee_id><sourcerecordid>28985879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-5ce02ded9597f6ea7ff59c9387ce3902a8ef83c8030d53f99ac1846f2fbf1bd3</originalsourceid><addsrcrecordid>eNqNkstLAzEQxoMoWKt3wcsi-LhsnbyTYym-oCDU4nVJs4ms7kOT3YP_vVlaEDyIp2GY33zMfHwInWKYYQz6Zn2_ep4RADpToDWFPTTBnKscBGP7aAJYi5woTQ7RUYxvAJhxLCdoOW8zM_RdY_rKZrbuhjJvTHyv2tcsfsXeNdkQx2Zj7PtH6LLWDcHUqfQx813I5i8Pq1UWrWtdPEYH3tTRnezqFK3vbteLh3z5dP-4mC9zy6Toc24dkNKVmmvphTPSe66tpkpaRzUQo5xX1CqgUHLqtTYWKyY88RuPNyWdoqutbLrnc3CxL5oqHVDXpnXdEAulKFBMBU7k5Z9kMkRxJfU_QKYY5f9QlBokFaPi9Z8gFhwzxhkTCT3_hb51Q2iTg-kVRoFIAgmCLWRDF2NwvvgIVWPCV4GhGBNQjAkoxgQU2wSklYudronW1D6Y1lbxZ48pQaSUiTvbcpVz7mdMgGih6DcVjbe7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884302720</pqid></control><display><type>article</type><title>An automatic cloud-masking system using backpro neural nets for AVHRR scenes</title><source>IEEE Electronic Library (IEL)</source><creator>Arriaza, J.A.T. ; Rojas, F.G. ; Lopez, M.P. ; Canton, M.</creator><creatorcontrib>Arriaza, J.A.T. ; Rojas, F.G. ; Lopez, M.P. ; Canton, M.</creatorcontrib><description>The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud contamination is the main producer of errors in deriving sea surface temperatures from remotely sensed data. Cloud masking is usually tackled as a statistical classification problem using threshold or texture-based information from satellite scenes. We attempt to construct an automatic cloud-masking system which uses heuristic knowledge about cloud features in Advanced Very High Resolution Radiometer scenes and artificial neural networks as classifiers. This system could be used as a preprocessing step in a future automatic oceanic feature identification system now being developed for the North Atlantic Ocean. The system has been compared with other traditional cloud mask methods to determine its accuracy.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2003.809930</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Automation ; Clouds ; Contamination ; Earth sciences ; Earth, ocean, space ; Error detection ; Exact sciences and technology ; Infrared imaging ; Internal geophysics ; Layout ; Masking ; Neural networks ; Ocean temperature ; Pattern recognition ; Pixel ; Preprocessing ; Remote sensing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2003-04, Vol.41 (4), p.826-831</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-5ce02ded9597f6ea7ff59c9387ce3902a8ef83c8030d53f99ac1846f2fbf1bd3</citedby><cites>FETCH-LOGICAL-c476t-5ce02ded9597f6ea7ff59c9387ce3902a8ef83c8030d53f99ac1846f2fbf1bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1202968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1202968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14862777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arriaza, J.A.T.</creatorcontrib><creatorcontrib>Rojas, F.G.</creatorcontrib><creatorcontrib>Lopez, M.P.</creatorcontrib><creatorcontrib>Canton, M.</creatorcontrib><title>An automatic cloud-masking system using backpro neural nets for AVHRR scenes</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud contamination is the main producer of errors in deriving sea surface temperatures from remotely sensed data. Cloud masking is usually tackled as a statistical classification problem using threshold or texture-based information from satellite scenes. We attempt to construct an automatic cloud-masking system which uses heuristic knowledge about cloud features in Advanced Very High Resolution Radiometer scenes and artificial neural networks as classifiers. This system could be used as a preprocessing step in a future automatic oceanic feature identification system now being developed for the North Atlantic Ocean. The system has been compared with other traditional cloud mask methods to determine its accuracy.</description><subject>Applied geophysics</subject><subject>Automation</subject><subject>Clouds</subject><subject>Contamination</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Error detection</subject><subject>Exact sciences and technology</subject><subject>Infrared imaging</subject><subject>Internal geophysics</subject><subject>Layout</subject><subject>Masking</subject><subject>Neural networks</subject><subject>Ocean temperature</subject><subject>Pattern recognition</subject><subject>Pixel</subject><subject>Preprocessing</subject><subject>Remote sensing</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkstLAzEQxoMoWKt3wcsi-LhsnbyTYym-oCDU4nVJs4ms7kOT3YP_vVlaEDyIp2GY33zMfHwInWKYYQz6Zn2_ep4RADpToDWFPTTBnKscBGP7aAJYi5woTQ7RUYxvAJhxLCdoOW8zM_RdY_rKZrbuhjJvTHyv2tcsfsXeNdkQx2Zj7PtH6LLWDcHUqfQx813I5i8Pq1UWrWtdPEYH3tTRnezqFK3vbteLh3z5dP-4mC9zy6Toc24dkNKVmmvphTPSe66tpkpaRzUQo5xX1CqgUHLqtTYWKyY88RuPNyWdoqutbLrnc3CxL5oqHVDXpnXdEAulKFBMBU7k5Z9kMkRxJfU_QKYY5f9QlBokFaPi9Z8gFhwzxhkTCT3_hb51Q2iTg-kVRoFIAgmCLWRDF2NwvvgIVWPCV4GhGBNQjAkoxgQU2wSklYudronW1D6Y1lbxZ48pQaSUiTvbcpVz7mdMgGih6DcVjbe7</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Arriaza, J.A.T.</creator><creator>Rojas, F.G.</creator><creator>Lopez, M.P.</creator><creator>Canton, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20030401</creationdate><title>An automatic cloud-masking system using backpro neural nets for AVHRR scenes</title><author>Arriaza, J.A.T. ; Rojas, F.G. ; Lopez, M.P. ; Canton, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-5ce02ded9597f6ea7ff59c9387ce3902a8ef83c8030d53f99ac1846f2fbf1bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied geophysics</topic><topic>Automation</topic><topic>Clouds</topic><topic>Contamination</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Error detection</topic><topic>Exact sciences and technology</topic><topic>Infrared imaging</topic><topic>Internal geophysics</topic><topic>Layout</topic><topic>Masking</topic><topic>Neural networks</topic><topic>Ocean temperature</topic><topic>Pattern recognition</topic><topic>Pixel</topic><topic>Preprocessing</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arriaza, J.A.T.</creatorcontrib><creatorcontrib>Rojas, F.G.</creatorcontrib><creatorcontrib>Lopez, M.P.</creatorcontrib><creatorcontrib>Canton, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arriaza, J.A.T.</au><au>Rojas, F.G.</au><au>Lopez, M.P.</au><au>Canton, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automatic cloud-masking system using backpro neural nets for AVHRR scenes</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2003-04-01</date><risdate>2003</risdate><volume>41</volume><issue>4</issue><spage>826</spage><epage>831</epage><pages>826-831</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The automation of pattern recognition in the field of remote sensing involves several preprocessing steps to remove noise and nonuseful data. When infrared data are used to obtain either ocean or land information, cloud pixels must first be identified and eliminated from the image, because cloud contamination is the main producer of errors in deriving sea surface temperatures from remotely sensed data. Cloud masking is usually tackled as a statistical classification problem using threshold or texture-based information from satellite scenes. We attempt to construct an automatic cloud-masking system which uses heuristic knowledge about cloud features in Advanced Very High Resolution Radiometer scenes and artificial neural networks as classifiers. This system could be used as a preprocessing step in a future automatic oceanic feature identification system now being developed for the North Atlantic Ocean. The system has been compared with other traditional cloud mask methods to determine its accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2003.809930</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2003-04, Vol.41 (4), p.826-831
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_28484351
source IEEE Electronic Library (IEL)
subjects Applied geophysics
Automation
Clouds
Contamination
Earth sciences
Earth, ocean, space
Error detection
Exact sciences and technology
Infrared imaging
Internal geophysics
Layout
Masking
Neural networks
Ocean temperature
Pattern recognition
Pixel
Preprocessing
Remote sensing
title An automatic cloud-masking system using backpro neural nets for AVHRR scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automatic%20cloud-masking%20system%20using%20backpro%20neural%20nets%20for%20AVHRR%20scenes&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Arriaza,%20J.A.T.&rft.date=2003-04-01&rft.volume=41&rft.issue=4&rft.spage=826&rft.epage=831&rft.pages=826-831&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2003.809930&rft_dat=%3Cproquest_RIE%3E28985879%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884302720&rft_id=info:pmid/&rft_ieee_id=1202968&rfr_iscdi=true