Hierarchical Cellulose Aerogel Reinforced with In Situ-Assembled Cellulose Nanofibers for Building Cooling

The development of new structural materials for passive daytime radiative cooling (PDRC) of buildings will significantly reduce global building energy consumption. Cellulose aerogels are potential PDRC materials for building cooling, but the cooling performance and mechanical strength of cellulose a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-08, Vol.15 (33), p.39807-39817
Hauptverfasser: Zhong, Shenjie, Yuan, Shuaixia, Zhang, Xun, Zhang, Jiawen, Xu, Lang, Xu, Tianqi, Zuo, Tian, Cai, Ying, Yi, Lingmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39817
container_issue 33
container_start_page 39807
container_title ACS applied materials & interfaces
container_volume 15
creator Zhong, Shenjie
Yuan, Shuaixia
Zhang, Xun
Zhang, Jiawen
Xu, Lang
Xu, Tianqi
Zuo, Tian
Cai, Ying
Yi, Lingmin
description The development of new structural materials for passive daytime radiative cooling (PDRC) of buildings will significantly reduce global building energy consumption. Cellulose aerogels are potential PDRC materials for building cooling, but the cooling performance and mechanical strength of cellulose aerogels are considered as challenges for their practical applications. Herein, a bio-inspired hierarchically structured cellulose aerogel (HSCA) was fabricated through an assembly strategy assisted by a high-voltage electrostatic field. The HSCA possesses outstanding PDRC performance and moderate mechanical strength owing to aligned hierarchical porous network microstructures reinforced with in situ-assembled crystalline cellulose nanofibers. Promisingly, the HSCA achieves a max cooling temperature of 7.2 °C and exhibits 1.9 MPa axial compressive strength. There was no significant cooling performance degradation after the hydrophobically modified HSCA was placed outdoors for 3 months. A simulation of potential cooling energy savings shows that by using HSCA as the building envelopes (side wall and roof), it can save 52.7% of cooling energy compared to the building baseline consumption. This new strategy opens up the possibility of developing advanced functionally regenerated cellulose aerogel, which is expected to provide a revolutionary improvement in aerogel materials for building cooling.
doi_str_mv 10.1021/acsami.3c06178
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2848230520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848230520</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-205b172991e9868fe6b2ae8ba42caab08af9ea5fdb10da6adc733f654beb48283</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EomxXjshHhJTiJUmdY6nYpAoklnM0dibUlROD3Qjx7zFqKSdOMxp97-nNI-SUszFngl-CidDZsTSs5BO1Qw54leeZEoXY3e55PiKHMS4ZK6VgxT4ZyUlRFCKvDsjyzmKAYBbWgKMzdG5wPiKdYvBv6OgT2r71wWBDP-1qQe97-mxXQzaNETvt0vlP8wC9b63GEGmS0KvBusb2b3TmvUvzmOy14CKebOYReb25fpndZfPH2_vZdJ6BlGyVpYSaT0RVcaxUqVostQBUGnJhADRT0FYIRdtozhoooTETKduyyDXqXAklj8j52vc9-I8B46rubDQpJfToh1gLlTDJCsESOl6jJvgYA7b1e7AdhK-as_qn33rdb73pNwnONt6D7rDZ4r-FJuBiDSRhvfRD6NOr_7l9A2_Chwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848230520</pqid></control><display><type>article</type><title>Hierarchical Cellulose Aerogel Reinforced with In Situ-Assembled Cellulose Nanofibers for Building Cooling</title><source>ACS Publications</source><creator>Zhong, Shenjie ; Yuan, Shuaixia ; Zhang, Xun ; Zhang, Jiawen ; Xu, Lang ; Xu, Tianqi ; Zuo, Tian ; Cai, Ying ; Yi, Lingmin</creator><creatorcontrib>Zhong, Shenjie ; Yuan, Shuaixia ; Zhang, Xun ; Zhang, Jiawen ; Xu, Lang ; Xu, Tianqi ; Zuo, Tian ; Cai, Ying ; Yi, Lingmin</creatorcontrib><description>The development of new structural materials for passive daytime radiative cooling (PDRC) of buildings will significantly reduce global building energy consumption. Cellulose aerogels are potential PDRC materials for building cooling, but the cooling performance and mechanical strength of cellulose aerogels are considered as challenges for their practical applications. Herein, a bio-inspired hierarchically structured cellulose aerogel (HSCA) was fabricated through an assembly strategy assisted by a high-voltage electrostatic field. The HSCA possesses outstanding PDRC performance and moderate mechanical strength owing to aligned hierarchical porous network microstructures reinforced with in situ-assembled crystalline cellulose nanofibers. Promisingly, the HSCA achieves a max cooling temperature of 7.2 °C and exhibits 1.9 MPa axial compressive strength. There was no significant cooling performance degradation after the hydrophobically modified HSCA was placed outdoors for 3 months. A simulation of potential cooling energy savings shows that by using HSCA as the building envelopes (side wall and roof), it can save 52.7% of cooling energy compared to the building baseline consumption. This new strategy opens up the possibility of developing advanced functionally regenerated cellulose aerogel, which is expected to provide a revolutionary improvement in aerogel materials for building cooling.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c06178</identifier><identifier>PMID: 37555249</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials &amp; interfaces, 2023-08, Vol.15 (33), p.39807-39817</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-205b172991e9868fe6b2ae8ba42caab08af9ea5fdb10da6adc733f654beb48283</citedby><cites>FETCH-LOGICAL-a330t-205b172991e9868fe6b2ae8ba42caab08af9ea5fdb10da6adc733f654beb48283</cites><orcidid>0000-0003-0289-6464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c06178$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c06178$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37555249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Shenjie</creatorcontrib><creatorcontrib>Yuan, Shuaixia</creatorcontrib><creatorcontrib>Zhang, Xun</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Xu, Lang</creatorcontrib><creatorcontrib>Xu, Tianqi</creatorcontrib><creatorcontrib>Zuo, Tian</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Yi, Lingmin</creatorcontrib><title>Hierarchical Cellulose Aerogel Reinforced with In Situ-Assembled Cellulose Nanofibers for Building Cooling</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The development of new structural materials for passive daytime radiative cooling (PDRC) of buildings will significantly reduce global building energy consumption. Cellulose aerogels are potential PDRC materials for building cooling, but the cooling performance and mechanical strength of cellulose aerogels are considered as challenges for their practical applications. Herein, a bio-inspired hierarchically structured cellulose aerogel (HSCA) was fabricated through an assembly strategy assisted by a high-voltage electrostatic field. The HSCA possesses outstanding PDRC performance and moderate mechanical strength owing to aligned hierarchical porous network microstructures reinforced with in situ-assembled crystalline cellulose nanofibers. Promisingly, the HSCA achieves a max cooling temperature of 7.2 °C and exhibits 1.9 MPa axial compressive strength. There was no significant cooling performance degradation after the hydrophobically modified HSCA was placed outdoors for 3 months. A simulation of potential cooling energy savings shows that by using HSCA as the building envelopes (side wall and roof), it can save 52.7% of cooling energy compared to the building baseline consumption. This new strategy opens up the possibility of developing advanced functionally regenerated cellulose aerogel, which is expected to provide a revolutionary improvement in aerogel materials for building cooling.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EomxXjshHhJTiJUmdY6nYpAoklnM0dibUlROD3Qjx7zFqKSdOMxp97-nNI-SUszFngl-CidDZsTSs5BO1Qw54leeZEoXY3e55PiKHMS4ZK6VgxT4ZyUlRFCKvDsjyzmKAYBbWgKMzdG5wPiKdYvBv6OgT2r71wWBDP-1qQe97-mxXQzaNETvt0vlP8wC9b63GEGmS0KvBusb2b3TmvUvzmOy14CKebOYReb25fpndZfPH2_vZdJ6BlGyVpYSaT0RVcaxUqVostQBUGnJhADRT0FYIRdtozhoooTETKduyyDXqXAklj8j52vc9-I8B46rubDQpJfToh1gLlTDJCsESOl6jJvgYA7b1e7AdhK-as_qn33rdb73pNwnONt6D7rDZ4r-FJuBiDSRhvfRD6NOr_7l9A2_Chwk</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Zhong, Shenjie</creator><creator>Yuan, Shuaixia</creator><creator>Zhang, Xun</creator><creator>Zhang, Jiawen</creator><creator>Xu, Lang</creator><creator>Xu, Tianqi</creator><creator>Zuo, Tian</creator><creator>Cai, Ying</creator><creator>Yi, Lingmin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0289-6464</orcidid></search><sort><creationdate>20230823</creationdate><title>Hierarchical Cellulose Aerogel Reinforced with In Situ-Assembled Cellulose Nanofibers for Building Cooling</title><author>Zhong, Shenjie ; Yuan, Shuaixia ; Zhang, Xun ; Zhang, Jiawen ; Xu, Lang ; Xu, Tianqi ; Zuo, Tian ; Cai, Ying ; Yi, Lingmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-205b172991e9868fe6b2ae8ba42caab08af9ea5fdb10da6adc733f654beb48283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Shenjie</creatorcontrib><creatorcontrib>Yuan, Shuaixia</creatorcontrib><creatorcontrib>Zhang, Xun</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Xu, Lang</creatorcontrib><creatorcontrib>Xu, Tianqi</creatorcontrib><creatorcontrib>Zuo, Tian</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Yi, Lingmin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Shenjie</au><au>Yuan, Shuaixia</au><au>Zhang, Xun</au><au>Zhang, Jiawen</au><au>Xu, Lang</au><au>Xu, Tianqi</au><au>Zuo, Tian</au><au>Cai, Ying</au><au>Yi, Lingmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Cellulose Aerogel Reinforced with In Situ-Assembled Cellulose Nanofibers for Building Cooling</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-08-23</date><risdate>2023</risdate><volume>15</volume><issue>33</issue><spage>39807</spage><epage>39817</epage><pages>39807-39817</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The development of new structural materials for passive daytime radiative cooling (PDRC) of buildings will significantly reduce global building energy consumption. Cellulose aerogels are potential PDRC materials for building cooling, but the cooling performance and mechanical strength of cellulose aerogels are considered as challenges for their practical applications. Herein, a bio-inspired hierarchically structured cellulose aerogel (HSCA) was fabricated through an assembly strategy assisted by a high-voltage electrostatic field. The HSCA possesses outstanding PDRC performance and moderate mechanical strength owing to aligned hierarchical porous network microstructures reinforced with in situ-assembled crystalline cellulose nanofibers. Promisingly, the HSCA achieves a max cooling temperature of 7.2 °C and exhibits 1.9 MPa axial compressive strength. There was no significant cooling performance degradation after the hydrophobically modified HSCA was placed outdoors for 3 months. A simulation of potential cooling energy savings shows that by using HSCA as the building envelopes (side wall and roof), it can save 52.7% of cooling energy compared to the building baseline consumption. This new strategy opens up the possibility of developing advanced functionally regenerated cellulose aerogel, which is expected to provide a revolutionary improvement in aerogel materials for building cooling.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37555249</pmid><doi>10.1021/acsami.3c06178</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0289-6464</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-08, Vol.15 (33), p.39807-39817
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2848230520
source ACS Publications
subjects Applications of Polymer, Composite, and Coating Materials
title Hierarchical Cellulose Aerogel Reinforced with In Situ-Assembled Cellulose Nanofibers for Building Cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Cellulose%20Aerogel%20Reinforced%20with%20In%20Situ-Assembled%20Cellulose%20Nanofibers%20for%20Building%20Cooling&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhong,%20Shenjie&rft.date=2023-08-23&rft.volume=15&rft.issue=33&rft.spage=39807&rft.epage=39817&rft.pages=39807-39817&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c06178&rft_dat=%3Cproquest_cross%3E2848230520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848230520&rft_id=info:pmid/37555249&rfr_iscdi=true