High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes
Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical a...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-08, Vol.15 (33), p.39351-39362 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39362 |
---|---|
container_issue | 33 |
container_start_page | 39351 |
container_title | ACS applied materials & interfaces |
container_volume | 15 |
creator | Ning, Meng Wen, Jiajun Duan, Zhihua Cao, Xiao Guo Chen, Jieqi Chen, Jingxun Yang, Qian Ye, Xiaoji Li, Zhenghui Zhang, Haiyan |
description | Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C–S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g–1), a high ICE (>90%), superior cycling stability (490 mAh g–1 after 1100 cycles at 5 A g–1), and outstanding rate performance (420 mAh g–1 at a high current density of 50 A g–1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before. |
doi_str_mv | 10.1021/acsami.3c07504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2848230254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848230254</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-f864764fa2f1a68e1f48cdbe2ec6f6b18cfaec73509dd760138560dcf476d6973</originalsourceid><addsrcrecordid>eNp1kEtPAjEURhujEUS3Lk2XxmSwr-mUJRIUEh8k6HrS6bRY0pliO7PAX-8gyM7Vvck935fcA8A1RkOMCL6XKsrKDqlCWYrYCejjEWOJICk5Pe6M9cBFjGuEOCUoPQc9mqUpEZT1QZjZ1WcyrXVYbeGDdA6-WOdsvYKL4Cvf6BIuW2faAOdV5Qvr7LdsrK-h8QFOfB2b0Kpmx_8WLXToDpWslYavMlk2PsiVhhMZii4zrn2p4yU4M9JFfXWYA_DxOH2fzJLnt6f5ZPycSEpRkxjBWcaZkcRgyYXGhglVFppoxQ0vsFBGapXRFI3KMuMIU5FyVCrTpUo-yugA3O57N8F_tTo2eWWj0s7JWvs25kQwQSgiKevQ4R5VwccYtMk3wVYybHOM8p3nfO85P3juAjeH7raodHnE_8R2wN0e6IL52reh7l79r-0H26KJXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848230254</pqid></control><display><type>article</type><title>High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes</title><source>ACS Publications</source><creator>Ning, Meng ; Wen, Jiajun ; Duan, Zhihua ; Cao, Xiao Guo ; Chen, Jieqi ; Chen, Jingxun ; Yang, Qian ; Ye, Xiaoji ; Li, Zhenghui ; Zhang, Haiyan</creator><creatorcontrib>Ning, Meng ; Wen, Jiajun ; Duan, Zhihua ; Cao, Xiao Guo ; Chen, Jieqi ; Chen, Jingxun ; Yang, Qian ; Ye, Xiaoji ; Li, Zhenghui ; Zhang, Haiyan</creatorcontrib><description>Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C–S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g–1), a high ICE (>90%), superior cycling stability (490 mAh g–1 after 1100 cycles at 5 A g–1), and outstanding rate performance (420 mAh g–1 at a high current density of 50 A g–1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c07504</identifier><identifier>PMID: 37552834</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2023-08, Vol.15 (33), p.39351-39362</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-f864764fa2f1a68e1f48cdbe2ec6f6b18cfaec73509dd760138560dcf476d6973</citedby><cites>FETCH-LOGICAL-a330t-f864764fa2f1a68e1f48cdbe2ec6f6b18cfaec73509dd760138560dcf476d6973</cites><orcidid>0000-0002-3721-4243 ; 0000-0003-0212-2901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c07504$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c07504$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37552834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ning, Meng</creatorcontrib><creatorcontrib>Wen, Jiajun</creatorcontrib><creatorcontrib>Duan, Zhihua</creatorcontrib><creatorcontrib>Cao, Xiao Guo</creatorcontrib><creatorcontrib>Chen, Jieqi</creatorcontrib><creatorcontrib>Chen, Jingxun</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Ye, Xiaoji</creatorcontrib><creatorcontrib>Li, Zhenghui</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><title>High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C–S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g–1), a high ICE (>90%), superior cycling stability (490 mAh g–1 after 1100 cycles at 5 A g–1), and outstanding rate performance (420 mAh g–1 at a high current density of 50 A g–1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAjEURhujEUS3Lk2XxmSwr-mUJRIUEh8k6HrS6bRY0pliO7PAX-8gyM7Vvck935fcA8A1RkOMCL6XKsrKDqlCWYrYCejjEWOJICk5Pe6M9cBFjGuEOCUoPQc9mqUpEZT1QZjZ1WcyrXVYbeGDdA6-WOdsvYKL4Cvf6BIuW2faAOdV5Qvr7LdsrK-h8QFOfB2b0Kpmx_8WLXToDpWslYavMlk2PsiVhhMZii4zrn2p4yU4M9JFfXWYA_DxOH2fzJLnt6f5ZPycSEpRkxjBWcaZkcRgyYXGhglVFppoxQ0vsFBGapXRFI3KMuMIU5FyVCrTpUo-yugA3O57N8F_tTo2eWWj0s7JWvs25kQwQSgiKevQ4R5VwccYtMk3wVYybHOM8p3nfO85P3juAjeH7raodHnE_8R2wN0e6IL52reh7l79r-0H26KJXQ</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Ning, Meng</creator><creator>Wen, Jiajun</creator><creator>Duan, Zhihua</creator><creator>Cao, Xiao Guo</creator><creator>Chen, Jieqi</creator><creator>Chen, Jingxun</creator><creator>Yang, Qian</creator><creator>Ye, Xiaoji</creator><creator>Li, Zhenghui</creator><creator>Zhang, Haiyan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3721-4243</orcidid><orcidid>https://orcid.org/0000-0003-0212-2901</orcidid></search><sort><creationdate>20230823</creationdate><title>High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes</title><author>Ning, Meng ; Wen, Jiajun ; Duan, Zhihua ; Cao, Xiao Guo ; Chen, Jieqi ; Chen, Jingxun ; Yang, Qian ; Ye, Xiaoji ; Li, Zhenghui ; Zhang, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-f864764fa2f1a68e1f48cdbe2ec6f6b18cfaec73509dd760138560dcf476d6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Meng</creatorcontrib><creatorcontrib>Wen, Jiajun</creatorcontrib><creatorcontrib>Duan, Zhihua</creatorcontrib><creatorcontrib>Cao, Xiao Guo</creatorcontrib><creatorcontrib>Chen, Jieqi</creatorcontrib><creatorcontrib>Chen, Jingxun</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Ye, Xiaoji</creatorcontrib><creatorcontrib>Li, Zhenghui</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Meng</au><au>Wen, Jiajun</au><au>Duan, Zhihua</au><au>Cao, Xiao Guo</au><au>Chen, Jieqi</au><au>Chen, Jingxun</au><au>Yang, Qian</au><au>Ye, Xiaoji</au><au>Li, Zhenghui</au><au>Zhang, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-08-23</date><risdate>2023</risdate><volume>15</volume><issue>33</issue><spage>39351</spage><epage>39362</epage><pages>39351-39362</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C–S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g–1), a high ICE (>90%), superior cycling stability (490 mAh g–1 after 1100 cycles at 5 A g–1), and outstanding rate performance (420 mAh g–1 at a high current density of 50 A g–1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37552834</pmid><doi>10.1021/acsami.3c07504</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3721-4243</orcidid><orcidid>https://orcid.org/0000-0003-0212-2901</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2023-08, Vol.15 (33), p.39351-39362 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2848230254 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Energy%20Ball%20Milling%20Promoted%20Sulfur%20Immobilization%20for%20Constructing%20High-Performance%20Na-Storage%20Carbon%20Anodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ning,%20Meng&rft.date=2023-08-23&rft.volume=15&rft.issue=33&rft.spage=39351&rft.epage=39362&rft.pages=39351-39362&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c07504&rft_dat=%3Cproquest_cross%3E2848230254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848230254&rft_id=info:pmid/37552834&rfr_iscdi=true |