High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes

Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-08, Vol.15 (33), p.39351-39362
Hauptverfasser: Ning, Meng, Wen, Jiajun, Duan, Zhihua, Cao, Xiao Guo, Chen, Jieqi, Chen, Jingxun, Yang, Qian, Ye, Xiaoji, Li, Zhenghui, Zhang, Haiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39362
container_issue 33
container_start_page 39351
container_title ACS applied materials & interfaces
container_volume 15
creator Ning, Meng
Wen, Jiajun
Duan, Zhihua
Cao, Xiao Guo
Chen, Jieqi
Chen, Jingxun
Yang, Qian
Ye, Xiaoji
Li, Zhenghui
Zhang, Haiyan
description Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C–S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g–1), a high ICE (>90%), superior cycling stability (490 mAh g–1 after 1100 cycles at 5 A g–1), and outstanding rate performance (420 mAh g–1 at a high current density of 50 A g–1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.
doi_str_mv 10.1021/acsami.3c07504
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2848230254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848230254</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-f864764fa2f1a68e1f48cdbe2ec6f6b18cfaec73509dd760138560dcf476d6973</originalsourceid><addsrcrecordid>eNp1kEtPAjEURhujEUS3Lk2XxmSwr-mUJRIUEh8k6HrS6bRY0pliO7PAX-8gyM7Vvck935fcA8A1RkOMCL6XKsrKDqlCWYrYCejjEWOJICk5Pe6M9cBFjGuEOCUoPQc9mqUpEZT1QZjZ1WcyrXVYbeGDdA6-WOdsvYKL4Cvf6BIuW2faAOdV5Qvr7LdsrK-h8QFOfB2b0Kpmx_8WLXToDpWslYavMlk2PsiVhhMZii4zrn2p4yU4M9JFfXWYA_DxOH2fzJLnt6f5ZPycSEpRkxjBWcaZkcRgyYXGhglVFppoxQ0vsFBGapXRFI3KMuMIU5FyVCrTpUo-yugA3O57N8F_tTo2eWWj0s7JWvs25kQwQSgiKevQ4R5VwccYtMk3wVYybHOM8p3nfO85P3juAjeH7raodHnE_8R2wN0e6IL52reh7l79r-0H26KJXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848230254</pqid></control><display><type>article</type><title>High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes</title><source>ACS Publications</source><creator>Ning, Meng ; Wen, Jiajun ; Duan, Zhihua ; Cao, Xiao Guo ; Chen, Jieqi ; Chen, Jingxun ; Yang, Qian ; Ye, Xiaoji ; Li, Zhenghui ; Zhang, Haiyan</creator><creatorcontrib>Ning, Meng ; Wen, Jiajun ; Duan, Zhihua ; Cao, Xiao Guo ; Chen, Jieqi ; Chen, Jingxun ; Yang, Qian ; Ye, Xiaoji ; Li, Zhenghui ; Zhang, Haiyan</creatorcontrib><description>Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C–S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (&gt;600 mAh g–1), a high ICE (&gt;90%), superior cycling stability (490 mAh g–1 after 1100 cycles at 5 A g–1), and outstanding rate performance (420 mAh g–1 at a high current density of 50 A g–1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c07504</identifier><identifier>PMID: 37552834</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-08, Vol.15 (33), p.39351-39362</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-f864764fa2f1a68e1f48cdbe2ec6f6b18cfaec73509dd760138560dcf476d6973</citedby><cites>FETCH-LOGICAL-a330t-f864764fa2f1a68e1f48cdbe2ec6f6b18cfaec73509dd760138560dcf476d6973</cites><orcidid>0000-0002-3721-4243 ; 0000-0003-0212-2901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c07504$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c07504$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37552834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ning, Meng</creatorcontrib><creatorcontrib>Wen, Jiajun</creatorcontrib><creatorcontrib>Duan, Zhihua</creatorcontrib><creatorcontrib>Cao, Xiao Guo</creatorcontrib><creatorcontrib>Chen, Jieqi</creatorcontrib><creatorcontrib>Chen, Jingxun</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Ye, Xiaoji</creatorcontrib><creatorcontrib>Li, Zhenghui</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><title>High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C–S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (&gt;600 mAh g–1), a high ICE (&gt;90%), superior cycling stability (490 mAh g–1 after 1100 cycles at 5 A g–1), and outstanding rate performance (420 mAh g–1 at a high current density of 50 A g–1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAjEURhujEUS3Lk2XxmSwr-mUJRIUEh8k6HrS6bRY0pliO7PAX-8gyM7Vvck935fcA8A1RkOMCL6XKsrKDqlCWYrYCejjEWOJICk5Pe6M9cBFjGuEOCUoPQc9mqUpEZT1QZjZ1WcyrXVYbeGDdA6-WOdsvYKL4Cvf6BIuW2faAOdV5Qvr7LdsrK-h8QFOfB2b0Kpmx_8WLXToDpWslYavMlk2PsiVhhMZii4zrn2p4yU4M9JFfXWYA_DxOH2fzJLnt6f5ZPycSEpRkxjBWcaZkcRgyYXGhglVFppoxQ0vsFBGapXRFI3KMuMIU5FyVCrTpUo-yugA3O57N8F_tTo2eWWj0s7JWvs25kQwQSgiKevQ4R5VwccYtMk3wVYybHOM8p3nfO85P3juAjeH7raodHnE_8R2wN0e6IL52reh7l79r-0H26KJXQ</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Ning, Meng</creator><creator>Wen, Jiajun</creator><creator>Duan, Zhihua</creator><creator>Cao, Xiao Guo</creator><creator>Chen, Jieqi</creator><creator>Chen, Jingxun</creator><creator>Yang, Qian</creator><creator>Ye, Xiaoji</creator><creator>Li, Zhenghui</creator><creator>Zhang, Haiyan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3721-4243</orcidid><orcidid>https://orcid.org/0000-0003-0212-2901</orcidid></search><sort><creationdate>20230823</creationdate><title>High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes</title><author>Ning, Meng ; Wen, Jiajun ; Duan, Zhihua ; Cao, Xiao Guo ; Chen, Jieqi ; Chen, Jingxun ; Yang, Qian ; Ye, Xiaoji ; Li, Zhenghui ; Zhang, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-f864764fa2f1a68e1f48cdbe2ec6f6b18cfaec73509dd760138560dcf476d6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Meng</creatorcontrib><creatorcontrib>Wen, Jiajun</creatorcontrib><creatorcontrib>Duan, Zhihua</creatorcontrib><creatorcontrib>Cao, Xiao Guo</creatorcontrib><creatorcontrib>Chen, Jieqi</creatorcontrib><creatorcontrib>Chen, Jingxun</creatorcontrib><creatorcontrib>Yang, Qian</creatorcontrib><creatorcontrib>Ye, Xiaoji</creatorcontrib><creatorcontrib>Li, Zhenghui</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Meng</au><au>Wen, Jiajun</au><au>Duan, Zhihua</au><au>Cao, Xiao Guo</au><au>Chen, Jieqi</au><au>Chen, Jingxun</au><au>Yang, Qian</au><au>Ye, Xiaoji</au><au>Li, Zhenghui</au><au>Zhang, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-08-23</date><risdate>2023</risdate><volume>15</volume><issue>33</issue><spage>39351</spage><epage>39362</epage><pages>39351-39362</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C–S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (&gt;600 mAh g–1), a high ICE (&gt;90%), superior cycling stability (490 mAh g–1 after 1100 cycles at 5 A g–1), and outstanding rate performance (420 mAh g–1 at a high current density of 50 A g–1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37552834</pmid><doi>10.1021/acsami.3c07504</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3721-4243</orcidid><orcidid>https://orcid.org/0000-0003-0212-2901</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-08, Vol.15 (33), p.39351-39362
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2848230254
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title High-Energy Ball Milling Promoted Sulfur Immobilization for Constructing High-Performance Na-Storage Carbon Anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Energy%20Ball%20Milling%20Promoted%20Sulfur%20Immobilization%20for%20Constructing%20High-Performance%20Na-Storage%20Carbon%20Anodes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ning,%20Meng&rft.date=2023-08-23&rft.volume=15&rft.issue=33&rft.spage=39351&rft.epage=39362&rft.pages=39351-39362&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c07504&rft_dat=%3Cproquest_cross%3E2848230254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848230254&rft_id=info:pmid/37552834&rfr_iscdi=true