Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues

Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-08, Vol.23 (15), p.7197-7205
Hauptverfasser: MacMillan, Presley, Syed, Abdullah M., Kingston, Benjamin R., Ngai, Jessica, Sindhwani, Shrey, Lin, Zachary P., Nguyen, Luan N. M., Ngo, Wayne, Mladjenovic, Stefan M., Ji, Qin, Blackadar, Colin, Chan, Warren C. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7205
container_issue 15
container_start_page 7197
container_title Nano letters
container_volume 23
creator MacMillan, Presley
Syed, Abdullah M.
Kingston, Benjamin R.
Ngai, Jessica
Sindhwani, Shrey
Lin, Zachary P.
Nguyen, Luan N. M.
Ngo, Wayne
Mladjenovic, Stefan M.
Ji, Qin
Blackadar, Colin
Chan, Warren C. W.
description Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heterogeneous solid tumors. This approach led to greater than 88% predictive accuracy of nanoparticle location within a tumor tissue. This proof-of-concept study shows that tumor heterogeneity might be defined computationally by the patterns of biological structures within the tissue, enabling the identification of tumor patterns for nanoparticle accumulation.
doi_str_mv 10.1021/acs.nanolett.3c02186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2848228646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848228646</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-bb5c5862865af2183eedd7fc27f092513230ba3a621785a0add208b4c88ead73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqXwBgjlyCXFsePEOaLyU1AFHHK3HHtTuUriYjtCvD0uLT1y2tVqZnb3Q-g6w_MMk-xOKj8f5GA7CGFOVRzx4gRNM0ZxWlQVOT32PJ-gC-83GOOKMnyOJrRkuCAkn6LX2n5Jp5MPB9qoYIZ18hZDt9IFozpIHowPzjRjMHZIzJAsIYCzaxjAjj6px966pDbej-Av0VkrOw9XhzpD9dNjvVimq_fnl8X9KpU05yFtGqYYLwgvmGzj0RRA67JVpGxxRVhGCcWNpLIgWcmZxFJrgnmTK85B6pLO0O0-duvsZ1wbRG-8gq6TvzcJwnNOYnpeRGm-lypnvXfQiq0zvXTfIsNiB1FEiOIPojhAjLabw4ax6UEfTX_UogDvBTv7xo5uiP_-n_kD1d6CYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848228646</pqid></control><display><type>article</type><title>Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues</title><source>ACS Publications</source><source>MEDLINE</source><creator>MacMillan, Presley ; Syed, Abdullah M. ; Kingston, Benjamin R. ; Ngai, Jessica ; Sindhwani, Shrey ; Lin, Zachary P. ; Nguyen, Luan N. M. ; Ngo, Wayne ; Mladjenovic, Stefan M. ; Ji, Qin ; Blackadar, Colin ; Chan, Warren C. W.</creator><creatorcontrib>MacMillan, Presley ; Syed, Abdullah M. ; Kingston, Benjamin R. ; Ngai, Jessica ; Sindhwani, Shrey ; Lin, Zachary P. ; Nguyen, Luan N. M. ; Ngo, Wayne ; Mladjenovic, Stefan M. ; Ji, Qin ; Blackadar, Colin ; Chan, Warren C. W.</creatorcontrib><description>Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heterogeneous solid tumors. This approach led to greater than 88% predictive accuracy of nanoparticle location within a tumor tissue. This proof-of-concept study shows that tumor heterogeneity might be defined computationally by the patterns of biological structures within the tissue, enabling the identification of tumor patterns for nanoparticle accumulation.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c02186</identifier><identifier>PMID: 37506224</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Humans ; Nanoparticles - chemistry ; Neoplasms</subject><ispartof>Nano letters, 2023-08, Vol.23 (15), p.7197-7205</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-bb5c5862865af2183eedd7fc27f092513230ba3a621785a0add208b4c88ead73</citedby><cites>FETCH-LOGICAL-a348t-bb5c5862865af2183eedd7fc27f092513230ba3a621785a0add208b4c88ead73</cites><orcidid>0000-0002-5755-2303 ; 0000-0002-3847-3693 ; 0000-0003-3778-8455 ; 0000-0001-9156-9662 ; 0000-0003-0446-9300 ; 0000-0001-5435-4785 ; 0009-0004-2746-6625 ; 0000-0002-7282-176X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c02186$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c02186$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37506224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacMillan, Presley</creatorcontrib><creatorcontrib>Syed, Abdullah M.</creatorcontrib><creatorcontrib>Kingston, Benjamin R.</creatorcontrib><creatorcontrib>Ngai, Jessica</creatorcontrib><creatorcontrib>Sindhwani, Shrey</creatorcontrib><creatorcontrib>Lin, Zachary P.</creatorcontrib><creatorcontrib>Nguyen, Luan N. M.</creatorcontrib><creatorcontrib>Ngo, Wayne</creatorcontrib><creatorcontrib>Mladjenovic, Stefan M.</creatorcontrib><creatorcontrib>Ji, Qin</creatorcontrib><creatorcontrib>Blackadar, Colin</creatorcontrib><creatorcontrib>Chan, Warren C. W.</creatorcontrib><title>Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heterogeneous solid tumors. This approach led to greater than 88% predictive accuracy of nanoparticle location within a tumor tissue. This proof-of-concept study shows that tumor heterogeneity might be defined computationally by the patterns of biological structures within the tissue, enabling the identification of tumor patterns for nanoparticle accumulation.</description><subject>Humans</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasms</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1OwzAQhC0EoqXwBgjlyCXFsePEOaLyU1AFHHK3HHtTuUriYjtCvD0uLT1y2tVqZnb3Q-g6w_MMk-xOKj8f5GA7CGFOVRzx4gRNM0ZxWlQVOT32PJ-gC-83GOOKMnyOJrRkuCAkn6LX2n5Jp5MPB9qoYIZ18hZDt9IFozpIHowPzjRjMHZIzJAsIYCzaxjAjj6px966pDbej-Av0VkrOw9XhzpD9dNjvVimq_fnl8X9KpU05yFtGqYYLwgvmGzj0RRA67JVpGxxRVhGCcWNpLIgWcmZxFJrgnmTK85B6pLO0O0-duvsZ1wbRG-8gq6TvzcJwnNOYnpeRGm-lypnvXfQiq0zvXTfIsNiB1FEiOIPojhAjLabw4ax6UEfTX_UogDvBTv7xo5uiP_-n_kD1d6CYw</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>MacMillan, Presley</creator><creator>Syed, Abdullah M.</creator><creator>Kingston, Benjamin R.</creator><creator>Ngai, Jessica</creator><creator>Sindhwani, Shrey</creator><creator>Lin, Zachary P.</creator><creator>Nguyen, Luan N. M.</creator><creator>Ngo, Wayne</creator><creator>Mladjenovic, Stefan M.</creator><creator>Ji, Qin</creator><creator>Blackadar, Colin</creator><creator>Chan, Warren C. W.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5755-2303</orcidid><orcidid>https://orcid.org/0000-0002-3847-3693</orcidid><orcidid>https://orcid.org/0000-0003-3778-8455</orcidid><orcidid>https://orcid.org/0000-0001-9156-9662</orcidid><orcidid>https://orcid.org/0000-0003-0446-9300</orcidid><orcidid>https://orcid.org/0000-0001-5435-4785</orcidid><orcidid>https://orcid.org/0009-0004-2746-6625</orcidid><orcidid>https://orcid.org/0000-0002-7282-176X</orcidid></search><sort><creationdate>20230809</creationdate><title>Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues</title><author>MacMillan, Presley ; Syed, Abdullah M. ; Kingston, Benjamin R. ; Ngai, Jessica ; Sindhwani, Shrey ; Lin, Zachary P. ; Nguyen, Luan N. M. ; Ngo, Wayne ; Mladjenovic, Stefan M. ; Ji, Qin ; Blackadar, Colin ; Chan, Warren C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-bb5c5862865af2183eedd7fc27f092513230ba3a621785a0add208b4c88ead73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Humans</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacMillan, Presley</creatorcontrib><creatorcontrib>Syed, Abdullah M.</creatorcontrib><creatorcontrib>Kingston, Benjamin R.</creatorcontrib><creatorcontrib>Ngai, Jessica</creatorcontrib><creatorcontrib>Sindhwani, Shrey</creatorcontrib><creatorcontrib>Lin, Zachary P.</creatorcontrib><creatorcontrib>Nguyen, Luan N. M.</creatorcontrib><creatorcontrib>Ngo, Wayne</creatorcontrib><creatorcontrib>Mladjenovic, Stefan M.</creatorcontrib><creatorcontrib>Ji, Qin</creatorcontrib><creatorcontrib>Blackadar, Colin</creatorcontrib><creatorcontrib>Chan, Warren C. W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacMillan, Presley</au><au>Syed, Abdullah M.</au><au>Kingston, Benjamin R.</au><au>Ngai, Jessica</au><au>Sindhwani, Shrey</au><au>Lin, Zachary P.</au><au>Nguyen, Luan N. M.</au><au>Ngo, Wayne</au><au>Mladjenovic, Stefan M.</au><au>Ji, Qin</au><au>Blackadar, Colin</au><au>Chan, Warren C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>23</volume><issue>15</issue><spage>7197</spage><epage>7205</epage><pages>7197-7205</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heterogeneous solid tumors. This approach led to greater than 88% predictive accuracy of nanoparticle location within a tumor tissue. This proof-of-concept study shows that tumor heterogeneity might be defined computationally by the patterns of biological structures within the tissue, enabling the identification of tumor patterns for nanoparticle accumulation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37506224</pmid><doi>10.1021/acs.nanolett.3c02186</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5755-2303</orcidid><orcidid>https://orcid.org/0000-0002-3847-3693</orcidid><orcidid>https://orcid.org/0000-0003-3778-8455</orcidid><orcidid>https://orcid.org/0000-0001-9156-9662</orcidid><orcidid>https://orcid.org/0000-0003-0446-9300</orcidid><orcidid>https://orcid.org/0000-0001-5435-4785</orcidid><orcidid>https://orcid.org/0009-0004-2746-6625</orcidid><orcidid>https://orcid.org/0000-0002-7282-176X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2023-08, Vol.23 (15), p.7197-7205
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2848228646
source ACS Publications; MEDLINE
subjects Humans
Nanoparticles - chemistry
Neoplasms
title Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Predicting%20Nanoparticle%20Distribution%20in%20Heterogeneous%20Tumor%20Tissues&rft.jtitle=Nano%20letters&rft.au=MacMillan,%20Presley&rft.date=2023-08-09&rft.volume=23&rft.issue=15&rft.spage=7197&rft.epage=7205&rft.pages=7197-7205&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c02186&rft_dat=%3Cproquest_cross%3E2848228646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848228646&rft_id=info:pmid/37506224&rfr_iscdi=true