Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues
Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heter...
Gespeichert in:
Veröffentlicht in: | Nano letters 2023-08, Vol.23 (15), p.7197-7205 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7205 |
---|---|
container_issue | 15 |
container_start_page | 7197 |
container_title | Nano letters |
container_volume | 23 |
creator | MacMillan, Presley Syed, Abdullah M. Kingston, Benjamin R. Ngai, Jessica Sindhwani, Shrey Lin, Zachary P. Nguyen, Luan N. M. Ngo, Wayne Mladjenovic, Stefan M. Ji, Qin Blackadar, Colin Chan, Warren C. W. |
description | Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heterogeneous solid tumors. This approach led to greater than 88% predictive accuracy of nanoparticle location within a tumor tissue. This proof-of-concept study shows that tumor heterogeneity might be defined computationally by the patterns of biological structures within the tissue, enabling the identification of tumor patterns for nanoparticle accumulation. |
doi_str_mv | 10.1021/acs.nanolett.3c02186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2848228646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848228646</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-bb5c5862865af2183eedd7fc27f092513230ba3a621785a0add208b4c88ead73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqXwBgjlyCXFsePEOaLyU1AFHHK3HHtTuUriYjtCvD0uLT1y2tVqZnb3Q-g6w_MMk-xOKj8f5GA7CGFOVRzx4gRNM0ZxWlQVOT32PJ-gC-83GOOKMnyOJrRkuCAkn6LX2n5Jp5MPB9qoYIZ18hZDt9IFozpIHowPzjRjMHZIzJAsIYCzaxjAjj6px966pDbej-Av0VkrOw9XhzpD9dNjvVimq_fnl8X9KpU05yFtGqYYLwgvmGzj0RRA67JVpGxxRVhGCcWNpLIgWcmZxFJrgnmTK85B6pLO0O0-duvsZ1wbRG-8gq6TvzcJwnNOYnpeRGm-lypnvXfQiq0zvXTfIsNiB1FEiOIPojhAjLabw4ax6UEfTX_UogDvBTv7xo5uiP_-n_kD1d6CYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848228646</pqid></control><display><type>article</type><title>Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues</title><source>ACS Publications</source><source>MEDLINE</source><creator>MacMillan, Presley ; Syed, Abdullah M. ; Kingston, Benjamin R. ; Ngai, Jessica ; Sindhwani, Shrey ; Lin, Zachary P. ; Nguyen, Luan N. M. ; Ngo, Wayne ; Mladjenovic, Stefan M. ; Ji, Qin ; Blackadar, Colin ; Chan, Warren C. W.</creator><creatorcontrib>MacMillan, Presley ; Syed, Abdullah M. ; Kingston, Benjamin R. ; Ngai, Jessica ; Sindhwani, Shrey ; Lin, Zachary P. ; Nguyen, Luan N. M. ; Ngo, Wayne ; Mladjenovic, Stefan M. ; Ji, Qin ; Blackadar, Colin ; Chan, Warren C. W.</creatorcontrib><description>Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heterogeneous solid tumors. This approach led to greater than 88% predictive accuracy of nanoparticle location within a tumor tissue. This proof-of-concept study shows that tumor heterogeneity might be defined computationally by the patterns of biological structures within the tissue, enabling the identification of tumor patterns for nanoparticle accumulation.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c02186</identifier><identifier>PMID: 37506224</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Humans ; Nanoparticles - chemistry ; Neoplasms</subject><ispartof>Nano letters, 2023-08, Vol.23 (15), p.7197-7205</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-bb5c5862865af2183eedd7fc27f092513230ba3a621785a0add208b4c88ead73</citedby><cites>FETCH-LOGICAL-a348t-bb5c5862865af2183eedd7fc27f092513230ba3a621785a0add208b4c88ead73</cites><orcidid>0000-0002-5755-2303 ; 0000-0002-3847-3693 ; 0000-0003-3778-8455 ; 0000-0001-9156-9662 ; 0000-0003-0446-9300 ; 0000-0001-5435-4785 ; 0009-0004-2746-6625 ; 0000-0002-7282-176X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c02186$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c02186$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37506224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacMillan, Presley</creatorcontrib><creatorcontrib>Syed, Abdullah M.</creatorcontrib><creatorcontrib>Kingston, Benjamin R.</creatorcontrib><creatorcontrib>Ngai, Jessica</creatorcontrib><creatorcontrib>Sindhwani, Shrey</creatorcontrib><creatorcontrib>Lin, Zachary P.</creatorcontrib><creatorcontrib>Nguyen, Luan N. M.</creatorcontrib><creatorcontrib>Ngo, Wayne</creatorcontrib><creatorcontrib>Mladjenovic, Stefan M.</creatorcontrib><creatorcontrib>Ji, Qin</creatorcontrib><creatorcontrib>Blackadar, Colin</creatorcontrib><creatorcontrib>Chan, Warren C. W.</creatorcontrib><title>Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heterogeneous solid tumors. This approach led to greater than 88% predictive accuracy of nanoparticle location within a tumor tissue. This proof-of-concept study shows that tumor heterogeneity might be defined computationally by the patterns of biological structures within the tissue, enabling the identification of tumor patterns for nanoparticle accumulation.</description><subject>Humans</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasms</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1OwzAQhC0EoqXwBgjlyCXFsePEOaLyU1AFHHK3HHtTuUriYjtCvD0uLT1y2tVqZnb3Q-g6w_MMk-xOKj8f5GA7CGFOVRzx4gRNM0ZxWlQVOT32PJ-gC-83GOOKMnyOJrRkuCAkn6LX2n5Jp5MPB9qoYIZ18hZDt9IFozpIHowPzjRjMHZIzJAsIYCzaxjAjj6px966pDbej-Av0VkrOw9XhzpD9dNjvVimq_fnl8X9KpU05yFtGqYYLwgvmGzj0RRA67JVpGxxRVhGCcWNpLIgWcmZxFJrgnmTK85B6pLO0O0-duvsZ1wbRG-8gq6TvzcJwnNOYnpeRGm-lypnvXfQiq0zvXTfIsNiB1FEiOIPojhAjLabw4ax6UEfTX_UogDvBTv7xo5uiP_-n_kD1d6CYw</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>MacMillan, Presley</creator><creator>Syed, Abdullah M.</creator><creator>Kingston, Benjamin R.</creator><creator>Ngai, Jessica</creator><creator>Sindhwani, Shrey</creator><creator>Lin, Zachary P.</creator><creator>Nguyen, Luan N. M.</creator><creator>Ngo, Wayne</creator><creator>Mladjenovic, Stefan M.</creator><creator>Ji, Qin</creator><creator>Blackadar, Colin</creator><creator>Chan, Warren C. W.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5755-2303</orcidid><orcidid>https://orcid.org/0000-0002-3847-3693</orcidid><orcidid>https://orcid.org/0000-0003-3778-8455</orcidid><orcidid>https://orcid.org/0000-0001-9156-9662</orcidid><orcidid>https://orcid.org/0000-0003-0446-9300</orcidid><orcidid>https://orcid.org/0000-0001-5435-4785</orcidid><orcidid>https://orcid.org/0009-0004-2746-6625</orcidid><orcidid>https://orcid.org/0000-0002-7282-176X</orcidid></search><sort><creationdate>20230809</creationdate><title>Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues</title><author>MacMillan, Presley ; Syed, Abdullah M. ; Kingston, Benjamin R. ; Ngai, Jessica ; Sindhwani, Shrey ; Lin, Zachary P. ; Nguyen, Luan N. M. ; Ngo, Wayne ; Mladjenovic, Stefan M. ; Ji, Qin ; Blackadar, Colin ; Chan, Warren C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-bb5c5862865af2183eedd7fc27f092513230ba3a621785a0add208b4c88ead73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Humans</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacMillan, Presley</creatorcontrib><creatorcontrib>Syed, Abdullah M.</creatorcontrib><creatorcontrib>Kingston, Benjamin R.</creatorcontrib><creatorcontrib>Ngai, Jessica</creatorcontrib><creatorcontrib>Sindhwani, Shrey</creatorcontrib><creatorcontrib>Lin, Zachary P.</creatorcontrib><creatorcontrib>Nguyen, Luan N. M.</creatorcontrib><creatorcontrib>Ngo, Wayne</creatorcontrib><creatorcontrib>Mladjenovic, Stefan M.</creatorcontrib><creatorcontrib>Ji, Qin</creatorcontrib><creatorcontrib>Blackadar, Colin</creatorcontrib><creatorcontrib>Chan, Warren C. W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacMillan, Presley</au><au>Syed, Abdullah M.</au><au>Kingston, Benjamin R.</au><au>Ngai, Jessica</au><au>Sindhwani, Shrey</au><au>Lin, Zachary P.</au><au>Nguyen, Luan N. M.</au><au>Ngo, Wayne</au><au>Mladjenovic, Stefan M.</au><au>Ji, Qin</au><au>Blackadar, Colin</au><au>Chan, Warren C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>23</volume><issue>15</issue><spage>7197</spage><epage>7205</epage><pages>7197-7205</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Nanobio interaction studies have generated a significant amount of data. An important next step is to organize the data and design computational techniques to analyze the nanobio interactions. Here we developed a computational technique to correlate the nanoparticle spatial distribution within heterogeneous solid tumors. This approach led to greater than 88% predictive accuracy of nanoparticle location within a tumor tissue. This proof-of-concept study shows that tumor heterogeneity might be defined computationally by the patterns of biological structures within the tissue, enabling the identification of tumor patterns for nanoparticle accumulation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37506224</pmid><doi>10.1021/acs.nanolett.3c02186</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5755-2303</orcidid><orcidid>https://orcid.org/0000-0002-3847-3693</orcidid><orcidid>https://orcid.org/0000-0003-3778-8455</orcidid><orcidid>https://orcid.org/0000-0001-9156-9662</orcidid><orcidid>https://orcid.org/0000-0003-0446-9300</orcidid><orcidid>https://orcid.org/0000-0001-5435-4785</orcidid><orcidid>https://orcid.org/0009-0004-2746-6625</orcidid><orcidid>https://orcid.org/0000-0002-7282-176X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2023-08, Vol.23 (15), p.7197-7205 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2848228646 |
source | ACS Publications; MEDLINE |
subjects | Humans Nanoparticles - chemistry Neoplasms |
title | Toward Predicting Nanoparticle Distribution in Heterogeneous Tumor Tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Predicting%20Nanoparticle%20Distribution%20in%20Heterogeneous%20Tumor%20Tissues&rft.jtitle=Nano%20letters&rft.au=MacMillan,%20Presley&rft.date=2023-08-09&rft.volume=23&rft.issue=15&rft.spage=7197&rft.epage=7205&rft.pages=7197-7205&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c02186&rft_dat=%3Cproquest_cross%3E2848228646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848228646&rft_id=info:pmid/37506224&rfr_iscdi=true |