Aluminene as a Low-Cost Anode Material for Li- and Na-Ion Batteries

Two-dimensional (2D) materials are promising candidates for next-generation battery technologies owing to their high surface area, excellent electrical conductivity, and lower diffusion energy barriers. In this work, we use first-principles density functional theory to explore the potential for usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-08, Vol.15 (31), p.37337-37343
Hauptverfasser: Yadav, Kiran, Ray, Nirat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37343
container_issue 31
container_start_page 37337
container_title ACS applied materials & interfaces
container_volume 15
creator Yadav, Kiran
Ray, Nirat
description Two-dimensional (2D) materials are promising candidates for next-generation battery technologies owing to their high surface area, excellent electrical conductivity, and lower diffusion energy barriers. In this work, we use first-principles density functional theory to explore the potential for using a 2D honeycomb lattice of aluminum, referred to as aluminene, as an anode material for metal-ion batteries. The metallic monolayer shows strong adsorption for a range of metal atoms, i.e., Li, Na, K, and Ca. We observe surface diffusion barriers as low as 0.03 eV, which correlate with the size of the adatom. The relatively low average open-circuit voltages of 0.27 V for Li and 0.42 V for Na are beneficial to the overall voltage of the cell. The estimated theoretical specific capacity has been found to be 994 mA h/g for Li and 870 mA h/g for Na. Our research highlights the promise of aluminene sheets in the development of low-cost, high-capacity, and lightweight advanced rechargeable ion batteries.
doi_str_mv 10.1021/acsami.3c05169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2848228623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848228623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-357c9fc88b849411d6cb4656d1c8e92c7f7ac42cddca6b06c80447ff2551ea3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK1ePcoeRUjd72yONfhRiHrQ-zLdbCAlydbdBPHfm5Lam6cZmOd9YR6ErilZUsLoPdgIbb3klkiqshM0p5kQiWaSnR53IWboIsYtIYozIs_RjKeScE3UHOWrZmjrznUOQ8SAC_-d5D72eNX50uFX6F2oocGVD7ioEwxdid8gWfsOP0C_P7p4ic4qaKK7OswF-nh6_MxfkuL9eZ2vigQ4J33CZWqzymq90SITlJbKboSSqqRWu4zZtErBCmbL0oLaEGU1ESKtKiYldcAX6HZq3QX_NbjYm7aO1jUNdM4P0TAtNGNaMT6iywm1wccYXGV2oW4h_BhKzF6bmbSZg7YxcHPoHjatK4_4n6cRuJuAMWi2fgjd-Oh_bb9FP3Wa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848228623</pqid></control><display><type>article</type><title>Aluminene as a Low-Cost Anode Material for Li- and Na-Ion Batteries</title><source>ACS Publications</source><creator>Yadav, Kiran ; Ray, Nirat</creator><creatorcontrib>Yadav, Kiran ; Ray, Nirat</creatorcontrib><description>Two-dimensional (2D) materials are promising candidates for next-generation battery technologies owing to their high surface area, excellent electrical conductivity, and lower diffusion energy barriers. In this work, we use first-principles density functional theory to explore the potential for using a 2D honeycomb lattice of aluminum, referred to as aluminene, as an anode material for metal-ion batteries. The metallic monolayer shows strong adsorption for a range of metal atoms, i.e., Li, Na, K, and Ca. We observe surface diffusion barriers as low as 0.03 eV, which correlate with the size of the adatom. The relatively low average open-circuit voltages of 0.27 V for Li and 0.42 V for Na are beneficial to the overall voltage of the cell. The estimated theoretical specific capacity has been found to be 994 mA h/g for Li and 870 mA h/g for Na. Our research highlights the promise of aluminene sheets in the development of low-cost, high-capacity, and lightweight advanced rechargeable ion batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c05169</identifier><identifier>PMID: 37503806</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-08, Vol.15 (31), p.37337-37343</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-357c9fc88b849411d6cb4656d1c8e92c7f7ac42cddca6b06c80447ff2551ea3</citedby><cites>FETCH-LOGICAL-a330t-357c9fc88b849411d6cb4656d1c8e92c7f7ac42cddca6b06c80447ff2551ea3</cites><orcidid>0000-0001-7673-5095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c05169$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c05169$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37503806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Kiran</creatorcontrib><creatorcontrib>Ray, Nirat</creatorcontrib><title>Aluminene as a Low-Cost Anode Material for Li- and Na-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Two-dimensional (2D) materials are promising candidates for next-generation battery technologies owing to their high surface area, excellent electrical conductivity, and lower diffusion energy barriers. In this work, we use first-principles density functional theory to explore the potential for using a 2D honeycomb lattice of aluminum, referred to as aluminene, as an anode material for metal-ion batteries. The metallic monolayer shows strong adsorption for a range of metal atoms, i.e., Li, Na, K, and Ca. We observe surface diffusion barriers as low as 0.03 eV, which correlate with the size of the adatom. The relatively low average open-circuit voltages of 0.27 V for Li and 0.42 V for Na are beneficial to the overall voltage of the cell. The estimated theoretical specific capacity has been found to be 994 mA h/g for Li and 870 mA h/g for Na. Our research highlights the promise of aluminene sheets in the development of low-cost, high-capacity, and lightweight advanced rechargeable ion batteries.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbK1ePcoeRUjd72yONfhRiHrQ-zLdbCAlydbdBPHfm5Lam6cZmOd9YR6ErilZUsLoPdgIbb3klkiqshM0p5kQiWaSnR53IWboIsYtIYozIs_RjKeScE3UHOWrZmjrznUOQ8SAC_-d5D72eNX50uFX6F2oocGVD7ioEwxdid8gWfsOP0C_P7p4ic4qaKK7OswF-nh6_MxfkuL9eZ2vigQ4J33CZWqzymq90SITlJbKboSSqqRWu4zZtErBCmbL0oLaEGU1ESKtKiYldcAX6HZq3QX_NbjYm7aO1jUNdM4P0TAtNGNaMT6iywm1wccYXGV2oW4h_BhKzF6bmbSZg7YxcHPoHjatK4_4n6cRuJuAMWi2fgjd-Oh_bb9FP3Wa</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Yadav, Kiran</creator><creator>Ray, Nirat</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7673-5095</orcidid></search><sort><creationdate>20230809</creationdate><title>Aluminene as a Low-Cost Anode Material for Li- and Na-Ion Batteries</title><author>Yadav, Kiran ; Ray, Nirat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-357c9fc88b849411d6cb4656d1c8e92c7f7ac42cddca6b06c80447ff2551ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Kiran</creatorcontrib><creatorcontrib>Ray, Nirat</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Kiran</au><au>Ray, Nirat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminene as a Low-Cost Anode Material for Li- and Na-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>15</volume><issue>31</issue><spage>37337</spage><epage>37343</epage><pages>37337-37343</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Two-dimensional (2D) materials are promising candidates for next-generation battery technologies owing to their high surface area, excellent electrical conductivity, and lower diffusion energy barriers. In this work, we use first-principles density functional theory to explore the potential for using a 2D honeycomb lattice of aluminum, referred to as aluminene, as an anode material for metal-ion batteries. The metallic monolayer shows strong adsorption for a range of metal atoms, i.e., Li, Na, K, and Ca. We observe surface diffusion barriers as low as 0.03 eV, which correlate with the size of the adatom. The relatively low average open-circuit voltages of 0.27 V for Li and 0.42 V for Na are beneficial to the overall voltage of the cell. The estimated theoretical specific capacity has been found to be 994 mA h/g for Li and 870 mA h/g for Na. Our research highlights the promise of aluminene sheets in the development of low-cost, high-capacity, and lightweight advanced rechargeable ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37503806</pmid><doi>10.1021/acsami.3c05169</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7673-5095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-08, Vol.15 (31), p.37337-37343
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2848228623
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Aluminene as a Low-Cost Anode Material for Li- and Na-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminene%20as%20a%20Low-Cost%20Anode%20Material%20for%20Li-%20and%20Na-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yadav,%20Kiran&rft.date=2023-08-09&rft.volume=15&rft.issue=31&rft.spage=37337&rft.epage=37343&rft.pages=37337-37343&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c05169&rft_dat=%3Cproquest_cross%3E2848228623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848228623&rft_id=info:pmid/37503806&rfr_iscdi=true