2D thermal/isothermal incompressible viscous flows

2D thermal and isothermal time‐dependent incompressible viscous flows are presented in rectangular domains governed by the Boussinesq approximation and Navier–Stokes equations in the stream function–vorticity formulation. The results are obtained with a simple numerical scheme based on a fixed point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2005-06, Vol.48 (4), p.349-366
Hauptverfasser: NICOLAS, Alfredo, BERMUDEZ, Blanca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 4
container_start_page 349
container_title International journal for numerical methods in fluids
container_volume 48
creator NICOLAS, Alfredo
BERMUDEZ, Blanca
description 2D thermal and isothermal time‐dependent incompressible viscous flows are presented in rectangular domains governed by the Boussinesq approximation and Navier–Stokes equations in the stream function–vorticity formulation. The results are obtained with a simple numerical scheme based on a fixed point iterative process applied to the non‐linear elliptic systems that result after a second‐order time discretization. The iterative process leads to the solution of uncoupled, well‐conditioned, symmetric linear elliptic problems. Thermal and isothermal examples are associated with the unregularized, driven cavity problem and correspond to several aspect ratios of the cavity. Some results are presented as validation examples and others, to the best of our knowledge, are reported for the first time. The parameters involved in the numerical experiments are the Reynolds number Re, the Grashof number Gr and the aspect ratio. All the results shown correspond to steady state flows obtained from the unsteady problem. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.895
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28479425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28479425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3605-bf5569a72bae6847ba861dfe5ce7c0a86d8c73e1c8f96863f7b34aead1af43783</originalsourceid><addsrcrecordid>eNp1kMtKAzEUQIMoWKv4C7NRFzJtHpPHLMXaKtQXKl2GTCbBaKZTk9bavzcyRVeu7r1wOFwOAMcIDhCEeGh9PRAl3QE9BEueQ8LILuhBzFGOYYn2wUGMbxDCEgvSAxiPsuWrCY3yQxfb7Zq5uW6bRTAxusqb7NNF3a5iZn27jodgzyofzdF29sHL-Or58jqf3k9uLi-muSYM0ryylLJScVwpw0TBKyUYqq2h2nAN01ELzYlBWtiSCUYsr0ihjKqRsgXhgvTBaeddhPZjZeJSNukN472am_SMxElaFpgm8KwDdWhjDMbKRXCNChuJoPxpIlMTmZok8mSrVFErb4Oaaxf_cCYgSqESd95xa-fN5j-dHE9HnTXvaBeX5uuXVuFdMk44lbO7iZzdoodHOmHyiXwDJmB-Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28479425</pqid></control><display><type>article</type><title>2D thermal/isothermal incompressible viscous flows</title><source>Wiley Online Library All Journals</source><creator>NICOLAS, Alfredo ; BERMUDEZ, Blanca</creator><creatorcontrib>NICOLAS, Alfredo ; BERMUDEZ, Blanca</creatorcontrib><description>2D thermal and isothermal time‐dependent incompressible viscous flows are presented in rectangular domains governed by the Boussinesq approximation and Navier–Stokes equations in the stream function–vorticity formulation. The results are obtained with a simple numerical scheme based on a fixed point iterative process applied to the non‐linear elliptic systems that result after a second‐order time discretization. The iterative process leads to the solution of uncoupled, well‐conditioned, symmetric linear elliptic problems. Thermal and isothermal examples are associated with the unregularized, driven cavity problem and correspond to several aspect ratios of the cavity. Some results are presented as validation examples and others, to the best of our knowledge, are reported for the first time. The parameters involved in the numerical experiments are the Reynolds number Re, the Grashof number Gr and the aspect ratio. All the results shown correspond to steady state flows obtained from the unsteady problem. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.895</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Computational methods in fluid dynamics ; Convection and heat transfer ; Exact sciences and technology ; fixed point iterative process ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; mixed convection ; Physics ; rectangular domains ; Reynolds and Grashof numbers ; Turbulent flows, convection, and heat transfer</subject><ispartof>International journal for numerical methods in fluids, 2005-06, Vol.48 (4), p.349-366</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3605-bf5569a72bae6847ba861dfe5ce7c0a86d8c73e1c8f96863f7b34aead1af43783</citedby><cites>FETCH-LOGICAL-c3605-bf5569a72bae6847ba861dfe5ce7c0a86d8c73e1c8f96863f7b34aead1af43783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.895$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.895$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16801271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NICOLAS, Alfredo</creatorcontrib><creatorcontrib>BERMUDEZ, Blanca</creatorcontrib><title>2D thermal/isothermal incompressible viscous flows</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>2D thermal and isothermal time‐dependent incompressible viscous flows are presented in rectangular domains governed by the Boussinesq approximation and Navier–Stokes equations in the stream function–vorticity formulation. The results are obtained with a simple numerical scheme based on a fixed point iterative process applied to the non‐linear elliptic systems that result after a second‐order time discretization. The iterative process leads to the solution of uncoupled, well‐conditioned, symmetric linear elliptic problems. Thermal and isothermal examples are associated with the unregularized, driven cavity problem and correspond to several aspect ratios of the cavity. Some results are presented as validation examples and others, to the best of our knowledge, are reported for the first time. The parameters involved in the numerical experiments are the Reynolds number Re, the Grashof number Gr and the aspect ratio. All the results shown correspond to steady state flows obtained from the unsteady problem. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>Computational methods in fluid dynamics</subject><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>fixed point iterative process</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>mixed convection</subject><subject>Physics</subject><subject>rectangular domains</subject><subject>Reynolds and Grashof numbers</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUQIMoWKv4C7NRFzJtHpPHLMXaKtQXKl2GTCbBaKZTk9bavzcyRVeu7r1wOFwOAMcIDhCEeGh9PRAl3QE9BEueQ8LILuhBzFGOYYn2wUGMbxDCEgvSAxiPsuWrCY3yQxfb7Zq5uW6bRTAxusqb7NNF3a5iZn27jodgzyofzdF29sHL-Or58jqf3k9uLi-muSYM0ryylLJScVwpw0TBKyUYqq2h2nAN01ELzYlBWtiSCUYsr0ihjKqRsgXhgvTBaeddhPZjZeJSNukN472am_SMxElaFpgm8KwDdWhjDMbKRXCNChuJoPxpIlMTmZok8mSrVFErb4Oaaxf_cCYgSqESd95xa-fN5j-dHE9HnTXvaBeX5uuXVuFdMk44lbO7iZzdoodHOmHyiXwDJmB-Ow</recordid><startdate>20050610</startdate><enddate>20050610</enddate><creator>NICOLAS, Alfredo</creator><creator>BERMUDEZ, Blanca</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20050610</creationdate><title>2D thermal/isothermal incompressible viscous flows</title><author>NICOLAS, Alfredo ; BERMUDEZ, Blanca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3605-bf5569a72bae6847ba861dfe5ce7c0a86d8c73e1c8f96863f7b34aead1af43783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>fixed point iterative process</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>mixed convection</topic><topic>Physics</topic><topic>rectangular domains</topic><topic>Reynolds and Grashof numbers</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NICOLAS, Alfredo</creatorcontrib><creatorcontrib>BERMUDEZ, Blanca</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NICOLAS, Alfredo</au><au>BERMUDEZ, Blanca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D thermal/isothermal incompressible viscous flows</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2005-06-10</date><risdate>2005</risdate><volume>48</volume><issue>4</issue><spage>349</spage><epage>366</epage><pages>349-366</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>2D thermal and isothermal time‐dependent incompressible viscous flows are presented in rectangular domains governed by the Boussinesq approximation and Navier–Stokes equations in the stream function–vorticity formulation. The results are obtained with a simple numerical scheme based on a fixed point iterative process applied to the non‐linear elliptic systems that result after a second‐order time discretization. The iterative process leads to the solution of uncoupled, well‐conditioned, symmetric linear elliptic problems. Thermal and isothermal examples are associated with the unregularized, driven cavity problem and correspond to several aspect ratios of the cavity. Some results are presented as validation examples and others, to the best of our knowledge, are reported for the first time. The parameters involved in the numerical experiments are the Reynolds number Re, the Grashof number Gr and the aspect ratio. All the results shown correspond to steady state flows obtained from the unsteady problem. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.895</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2005-06, Vol.48 (4), p.349-366
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_miscellaneous_28479425
source Wiley Online Library All Journals
subjects Computational methods in fluid dynamics
Convection and heat transfer
Exact sciences and technology
fixed point iterative process
Fluid dynamics
Fundamental areas of phenomenology (including applications)
mixed convection
Physics
rectangular domains
Reynolds and Grashof numbers
Turbulent flows, convection, and heat transfer
title 2D thermal/isothermal incompressible viscous flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20thermal/isothermal%20incompressible%20viscous%20flows&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=NICOLAS,%20Alfredo&rft.date=2005-06-10&rft.volume=48&rft.issue=4&rft.spage=349&rft.epage=366&rft.pages=349-366&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.895&rft_dat=%3Cproquest_cross%3E28479425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28479425&rft_id=info:pmid/&rfr_iscdi=true