On the average value of divisor sums in arithmetic progressions

We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Mathematics Research Notices 2005-01, Vol.2005 (1), p.1-25
Hauptverfasser: Banks, William D., Heath-Brown, Roger, Shparlinski, Igor E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 1
container_title International Mathematics Research Notices
container_volume 2005
creator Banks, William D.
Heath-Brown, Roger
Shparlinski, Igor E.
description We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in particular, we obtain upper bounds for such twisted sums.
doi_str_mv 10.1155/IMRN.2005.1
format Article
fullrecord <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_proquest_miscellaneous_28477701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28477701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-8dd9ddce843428b1e1fa2c54d3f03a081eb385222e1f5e786280a6f7405320e03</originalsourceid><addsrcrecordid>eNotjc1KAzEYRYMoWKsrXyArd1O_JJOfWYkUtZVqoSiKm5DOfNNG56cmM0Xf3oG6ugfu4V5CLhlMGJPyev60ep5wADlhR2TElNEJY5k-Hhi0SHTGzSk5i_ETgOsM2IjcLBvabZG6PQa3Qbp3VY-0LWnh9z62gca-jtQ31AXfbWvsfE53od0EjNG3TTwnJ6WrIl7855i83t-9TGfJYvkwn94ukpwr1SWmKLKiyNGkIuVmzZCVjucyLUQJwoFhuBZGcs6HQqI2ihtwqtQpSMEBQYzJ1WF3OP_uMXa29jHHqnINtn203KRaa2CDmBxEHzv8sbvgaxd-rQtfVmmhpZ29f1hx_6bk9HFlhfgDT89abA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28477701</pqid></control><display><type>article</type><title>On the average value of divisor sums in arithmetic progressions</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Banks, William D. ; Heath-Brown, Roger ; Shparlinski, Igor E.</creator><creatorcontrib>Banks, William D. ; Heath-Brown, Roger ; Shparlinski, Igor E.</creatorcontrib><description>We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in particular, we obtain upper bounds for such twisted sums.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-1197</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1155/IMRN.2005.1</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>International Mathematics Research Notices, 2005-01, Vol.2005 (1), p.1-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-8dd9ddce843428b1e1fa2c54d3f03a081eb385222e1f5e786280a6f7405320e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Banks, William D.</creatorcontrib><creatorcontrib>Heath-Brown, Roger</creatorcontrib><creatorcontrib>Shparlinski, Igor E.</creatorcontrib><title>On the average value of divisor sums in arithmetic progressions</title><title>International Mathematics Research Notices</title><description>We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in particular, we obtain upper bounds for such twisted sums.</description><issn>1073-7928</issn><issn>1687-1197</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotjc1KAzEYRYMoWKsrXyArd1O_JJOfWYkUtZVqoSiKm5DOfNNG56cmM0Xf3oG6ugfu4V5CLhlMGJPyev60ep5wADlhR2TElNEJY5k-Hhi0SHTGzSk5i_ETgOsM2IjcLBvabZG6PQa3Qbp3VY-0LWnh9z62gca-jtQ31AXfbWvsfE53od0EjNG3TTwnJ6WrIl7855i83t-9TGfJYvkwn94ukpwr1SWmKLKiyNGkIuVmzZCVjucyLUQJwoFhuBZGcs6HQqI2ihtwqtQpSMEBQYzJ1WF3OP_uMXa29jHHqnINtn203KRaa2CDmBxEHzv8sbvgaxd-rQtfVmmhpZ29f1hx_6bk9HFlhfgDT89abA</recordid><startdate>20050105</startdate><enddate>20050105</enddate><creator>Banks, William D.</creator><creator>Heath-Brown, Roger</creator><creator>Shparlinski, Igor E.</creator><general>Hindawi Publishing Corporation</general><scope>BSCLL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050105</creationdate><title>On the average value of divisor sums in arithmetic progressions</title><author>Banks, William D. ; Heath-Brown, Roger ; Shparlinski, Igor E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-8dd9ddce843428b1e1fa2c54d3f03a081eb385222e1f5e786280a6f7405320e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banks, William D.</creatorcontrib><creatorcontrib>Heath-Brown, Roger</creatorcontrib><creatorcontrib>Shparlinski, Igor E.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Mathematics Research Notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banks, William D.</au><au>Heath-Brown, Roger</au><au>Shparlinski, Igor E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the average value of divisor sums in arithmetic progressions</atitle><jtitle>International Mathematics Research Notices</jtitle><date>2005-01-05</date><risdate>2005</risdate><volume>2005</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1073-7928</issn><eissn>1687-1197</eissn><eissn>1687-0247</eissn><abstract>We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in particular, we obtain upper bounds for such twisted sums.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/IMRN.2005.1</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International Mathematics Research Notices, 2005-01, Vol.2005 (1), p.1-25
issn 1073-7928
1687-1197
1687-0247
language eng
recordid cdi_proquest_miscellaneous_28477701
source Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title On the average value of divisor sums in arithmetic progressions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20average%20value%20of%20divisor%20sums%20in%20arithmetic%20progressions&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.au=Banks,%20William%20D.&rft.date=2005-01-05&rft.volume=2005&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1073-7928&rft.eissn=1687-1197&rft_id=info:doi/10.1155/IMRN.2005.1&rft_dat=%3Cproquest_istex%3E28477701%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28477701&rft_id=info:pmid/&rfr_iscdi=true