On the average value of divisor sums in arithmetic progressions
We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplica...
Gespeichert in:
Veröffentlicht in: | International Mathematics Research Notices 2005-01, Vol.2005 (1), p.1-25 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | International Mathematics Research Notices |
container_volume | 2005 |
creator | Banks, William D. Heath-Brown, Roger Shparlinski, Igor E. |
description | We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in particular, we obtain upper bounds for such twisted sums. |
doi_str_mv | 10.1155/IMRN.2005.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_proquest_miscellaneous_28477701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28477701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-8dd9ddce843428b1e1fa2c54d3f03a081eb385222e1f5e786280a6f7405320e03</originalsourceid><addsrcrecordid>eNotjc1KAzEYRYMoWKsrXyArd1O_JJOfWYkUtZVqoSiKm5DOfNNG56cmM0Xf3oG6ugfu4V5CLhlMGJPyev60ep5wADlhR2TElNEJY5k-Hhi0SHTGzSk5i_ETgOsM2IjcLBvabZG6PQa3Qbp3VY-0LWnh9z62gca-jtQ31AXfbWvsfE53od0EjNG3TTwnJ6WrIl7855i83t-9TGfJYvkwn94ukpwr1SWmKLKiyNGkIuVmzZCVjucyLUQJwoFhuBZGcs6HQqI2ihtwqtQpSMEBQYzJ1WF3OP_uMXa29jHHqnINtn203KRaa2CDmBxEHzv8sbvgaxd-rQtfVmmhpZ29f1hx_6bk9HFlhfgDT89abA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28477701</pqid></control><display><type>article</type><title>On the average value of divisor sums in arithmetic progressions</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Banks, William D. ; Heath-Brown, Roger ; Shparlinski, Igor E.</creator><creatorcontrib>Banks, William D. ; Heath-Brown, Roger ; Shparlinski, Igor E.</creatorcontrib><description>We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in particular, we obtain upper bounds for such twisted sums.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-1197</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1155/IMRN.2005.1</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>International Mathematics Research Notices, 2005-01, Vol.2005 (1), p.1-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-8dd9ddce843428b1e1fa2c54d3f03a081eb385222e1f5e786280a6f7405320e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Banks, William D.</creatorcontrib><creatorcontrib>Heath-Brown, Roger</creatorcontrib><creatorcontrib>Shparlinski, Igor E.</creatorcontrib><title>On the average value of divisor sums in arithmetic progressions</title><title>International Mathematics Research Notices</title><description>We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in particular, we obtain upper bounds for such twisted sums.</description><issn>1073-7928</issn><issn>1687-1197</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotjc1KAzEYRYMoWKsrXyArd1O_JJOfWYkUtZVqoSiKm5DOfNNG56cmM0Xf3oG6ugfu4V5CLhlMGJPyev60ep5wADlhR2TElNEJY5k-Hhi0SHTGzSk5i_ETgOsM2IjcLBvabZG6PQa3Qbp3VY-0LWnh9z62gca-jtQ31AXfbWvsfE53od0EjNG3TTwnJ6WrIl7855i83t-9TGfJYvkwn94ukpwr1SWmKLKiyNGkIuVmzZCVjucyLUQJwoFhuBZGcs6HQqI2ihtwqtQpSMEBQYzJ1WF3OP_uMXa29jHHqnINtn203KRaa2CDmBxEHzv8sbvgaxd-rQtfVmmhpZ29f1hx_6bk9HFlhfgDT89abA</recordid><startdate>20050105</startdate><enddate>20050105</enddate><creator>Banks, William D.</creator><creator>Heath-Brown, Roger</creator><creator>Shparlinski, Igor E.</creator><general>Hindawi Publishing Corporation</general><scope>BSCLL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050105</creationdate><title>On the average value of divisor sums in arithmetic progressions</title><author>Banks, William D. ; Heath-Brown, Roger ; Shparlinski, Igor E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-8dd9ddce843428b1e1fa2c54d3f03a081eb385222e1f5e786280a6f7405320e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banks, William D.</creatorcontrib><creatorcontrib>Heath-Brown, Roger</creatorcontrib><creatorcontrib>Shparlinski, Igor E.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Mathematics Research Notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banks, William D.</au><au>Heath-Brown, Roger</au><au>Shparlinski, Igor E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the average value of divisor sums in arithmetic progressions</atitle><jtitle>International Mathematics Research Notices</jtitle><date>2005-01-05</date><risdate>2005</risdate><volume>2005</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1073-7928</issn><eissn>1687-1197</eissn><eissn>1687-0247</eissn><abstract>We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in particular, we obtain upper bounds for such twisted sums.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/IMRN.2005.1</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International Mathematics Research Notices, 2005-01, Vol.2005 (1), p.1-25 |
issn | 1073-7928 1687-1197 1687-0247 |
language | eng |
recordid | cdi_proquest_miscellaneous_28477701 |
source | Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | On the average value of divisor sums in arithmetic progressions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20average%20value%20of%20divisor%20sums%20in%20arithmetic%20progressions&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.au=Banks,%20William%20D.&rft.date=2005-01-05&rft.volume=2005&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1073-7928&rft.eissn=1687-1197&rft_id=info:doi/10.1155/IMRN.2005.1&rft_dat=%3Cproquest_istex%3E28477701%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28477701&rft_id=info:pmid/&rfr_iscdi=true |