Class key feature extraction and fusion for 2D medical image segmentation

Background The size variation, complex semantic environment and high similarity in medical images often prevent deep learning models from achieving good performance. Purpose To overcome these problems and improve the model segmentation performance and generalizability. Methods We propose the key cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2024-02, Vol.51 (2), p.1263-1276
Hauptverfasser: Zhang, Dezhi, Fan, Xin, Kang, Xiaojing, Tian, Shengwei, Xiao, Guangli, Yu, Long, Wu, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1276
container_issue 2
container_start_page 1263
container_title Medical physics (Lancaster)
container_volume 51
creator Zhang, Dezhi
Fan, Xin
Kang, Xiaojing
Tian, Shengwei
Xiao, Guangli
Yu, Long
Wu, Weidong
description Background The size variation, complex semantic environment and high similarity in medical images often prevent deep learning models from achieving good performance. Purpose To overcome these problems and improve the model segmentation performance and generalizability. Methods We propose the key class feature reconstruction module (KCRM), which ranks channel weights and selects key features (KFs) that contribute more to the segmentation results for each class. Meanwhile, KCRM reconstructs all local features to establish the dependence relationship from local features to KFs. In addition, we propose the spatial gating module (SGM), which employs KFs to generate two spatial maps to suppress irrelevant regions, strengthening the ability to locate semantic objects. Finally, we enable the model to adapt to size variations by diversifying the receptive field. Results We integrate these modules into class key feature extraction and fusion network (CKFFNet) and validate its performance on three public medical datasets: CHAOS, UW‐Madison, and ISIC2017. The experimental results show that our method achieves better segmentation results and generalizability than those of mainstream methods. Conclusion Through quantitative and qualitative research, the proposed module improves the segmentation results and enhances the model generalizability, making it suitable for application and expansion.
doi_str_mv 10.1002/mp.16636
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2847745925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847745925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2826-e9dd8d4568254540e6f733aea5691fe573917db80e857695a7f0bbd06604377e3</originalsourceid><addsrcrecordid>eNp1kMlOwzAQQC0EoqUg8QXIRy4pE6_JEZWtUhEc4Gw5ybgKZMNOBP17Uspy4jRzeHqaeYScxjCPAdhF3c1jpbjaI1MmNI8Eg3SfTAFSETEBckKOQngBAMUlHJIJ11IyydiULBeVDYG-4oY6tP3gkeJH723el21DbVNQN4Tt6lpP2RWtsShzW9GytmukAdc1Nr3dwsfkwNkq4Mn3nJHnm-unxV20erhdLi5XUc4SpiJMiyIphFQJk0IKQOU05xatVGnsUGqexrrIEsBEapVKqx1kWQFKgeBaI5-R85238-3bgKE3dRlyrCrbYDsEwxKhtZApk39o7tsQPDrT-fFwvzExmG04U3fmK9yInn1bh2z88Rf8KTUC0Q54Lyvc_Csy94874Sd1BnTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847745925</pqid></control><display><type>article</type><title>Class key feature extraction and fusion for 2D medical image segmentation</title><source>Access via Wiley Online Library</source><creator>Zhang, Dezhi ; Fan, Xin ; Kang, Xiaojing ; Tian, Shengwei ; Xiao, Guangli ; Yu, Long ; Wu, Weidong</creator><creatorcontrib>Zhang, Dezhi ; Fan, Xin ; Kang, Xiaojing ; Tian, Shengwei ; Xiao, Guangli ; Yu, Long ; Wu, Weidong</creatorcontrib><description>Background The size variation, complex semantic environment and high similarity in medical images often prevent deep learning models from achieving good performance. Purpose To overcome these problems and improve the model segmentation performance and generalizability. Methods We propose the key class feature reconstruction module (KCRM), which ranks channel weights and selects key features (KFs) that contribute more to the segmentation results for each class. Meanwhile, KCRM reconstructs all local features to establish the dependence relationship from local features to KFs. In addition, we propose the spatial gating module (SGM), which employs KFs to generate two spatial maps to suppress irrelevant regions, strengthening the ability to locate semantic objects. Finally, we enable the model to adapt to size variations by diversifying the receptive field. Results We integrate these modules into class key feature extraction and fusion network (CKFFNet) and validate its performance on three public medical datasets: CHAOS, UW‐Madison, and ISIC2017. The experimental results show that our method achieves better segmentation results and generalizability than those of mainstream methods. Conclusion Through quantitative and qualitative research, the proposed module improves the segmentation results and enhances the model generalizability, making it suitable for application and expansion.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.16636</identifier><identifier>PMID: 37552522</identifier><language>eng</language><publisher>United States</publisher><subject>feature extraction ; fusion ; medical images ; ranking channels ; semantic segmentation</subject><ispartof>Medical physics (Lancaster), 2024-02, Vol.51 (2), p.1263-1276</ispartof><rights>2023 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2826-e9dd8d4568254540e6f733aea5691fe573917db80e857695a7f0bbd06604377e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.16636$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.16636$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37552522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Dezhi</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Kang, Xiaojing</creatorcontrib><creatorcontrib>Tian, Shengwei</creatorcontrib><creatorcontrib>Xiao, Guangli</creatorcontrib><creatorcontrib>Yu, Long</creatorcontrib><creatorcontrib>Wu, Weidong</creatorcontrib><title>Class key feature extraction and fusion for 2D medical image segmentation</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Background The size variation, complex semantic environment and high similarity in medical images often prevent deep learning models from achieving good performance. Purpose To overcome these problems and improve the model segmentation performance and generalizability. Methods We propose the key class feature reconstruction module (KCRM), which ranks channel weights and selects key features (KFs) that contribute more to the segmentation results for each class. Meanwhile, KCRM reconstructs all local features to establish the dependence relationship from local features to KFs. In addition, we propose the spatial gating module (SGM), which employs KFs to generate two spatial maps to suppress irrelevant regions, strengthening the ability to locate semantic objects. Finally, we enable the model to adapt to size variations by diversifying the receptive field. Results We integrate these modules into class key feature extraction and fusion network (CKFFNet) and validate its performance on three public medical datasets: CHAOS, UW‐Madison, and ISIC2017. The experimental results show that our method achieves better segmentation results and generalizability than those of mainstream methods. Conclusion Through quantitative and qualitative research, the proposed module improves the segmentation results and enhances the model generalizability, making it suitable for application and expansion.</description><subject>feature extraction</subject><subject>fusion</subject><subject>medical images</subject><subject>ranking channels</subject><subject>semantic segmentation</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQQC0EoqUg8QXIRy4pE6_JEZWtUhEc4Gw5ybgKZMNOBP17Uspy4jRzeHqaeYScxjCPAdhF3c1jpbjaI1MmNI8Eg3SfTAFSETEBckKOQngBAMUlHJIJ11IyydiULBeVDYG-4oY6tP3gkeJH723el21DbVNQN4Tt6lpP2RWtsShzW9GytmukAdc1Nr3dwsfkwNkq4Mn3nJHnm-unxV20erhdLi5XUc4SpiJMiyIphFQJk0IKQOU05xatVGnsUGqexrrIEsBEapVKqx1kWQFKgeBaI5-R85238-3bgKE3dRlyrCrbYDsEwxKhtZApk39o7tsQPDrT-fFwvzExmG04U3fmK9yInn1bh2z88Rf8KTUC0Q54Lyvc_Csy94874Sd1BnTo</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Zhang, Dezhi</creator><creator>Fan, Xin</creator><creator>Kang, Xiaojing</creator><creator>Tian, Shengwei</creator><creator>Xiao, Guangli</creator><creator>Yu, Long</creator><creator>Wu, Weidong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202402</creationdate><title>Class key feature extraction and fusion for 2D medical image segmentation</title><author>Zhang, Dezhi ; Fan, Xin ; Kang, Xiaojing ; Tian, Shengwei ; Xiao, Guangli ; Yu, Long ; Wu, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2826-e9dd8d4568254540e6f733aea5691fe573917db80e857695a7f0bbd06604377e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>feature extraction</topic><topic>fusion</topic><topic>medical images</topic><topic>ranking channels</topic><topic>semantic segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dezhi</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><creatorcontrib>Kang, Xiaojing</creatorcontrib><creatorcontrib>Tian, Shengwei</creatorcontrib><creatorcontrib>Xiao, Guangli</creatorcontrib><creatorcontrib>Yu, Long</creatorcontrib><creatorcontrib>Wu, Weidong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dezhi</au><au>Fan, Xin</au><au>Kang, Xiaojing</au><au>Tian, Shengwei</au><au>Xiao, Guangli</au><au>Yu, Long</au><au>Wu, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Class key feature extraction and fusion for 2D medical image segmentation</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2024-02</date><risdate>2024</risdate><volume>51</volume><issue>2</issue><spage>1263</spage><epage>1276</epage><pages>1263-1276</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Background The size variation, complex semantic environment and high similarity in medical images often prevent deep learning models from achieving good performance. Purpose To overcome these problems and improve the model segmentation performance and generalizability. Methods We propose the key class feature reconstruction module (KCRM), which ranks channel weights and selects key features (KFs) that contribute more to the segmentation results for each class. Meanwhile, KCRM reconstructs all local features to establish the dependence relationship from local features to KFs. In addition, we propose the spatial gating module (SGM), which employs KFs to generate two spatial maps to suppress irrelevant regions, strengthening the ability to locate semantic objects. Finally, we enable the model to adapt to size variations by diversifying the receptive field. Results We integrate these modules into class key feature extraction and fusion network (CKFFNet) and validate its performance on three public medical datasets: CHAOS, UW‐Madison, and ISIC2017. The experimental results show that our method achieves better segmentation results and generalizability than those of mainstream methods. Conclusion Through quantitative and qualitative research, the proposed module improves the segmentation results and enhances the model generalizability, making it suitable for application and expansion.</abstract><cop>United States</cop><pmid>37552522</pmid><doi>10.1002/mp.16636</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2024-02, Vol.51 (2), p.1263-1276
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_2847745925
source Access via Wiley Online Library
subjects feature extraction
fusion
medical images
ranking channels
semantic segmentation
title Class key feature extraction and fusion for 2D medical image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A35%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Class%20key%20feature%20extraction%20and%20fusion%20for%202D%20medical%20image%20segmentation&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Zhang,%20Dezhi&rft.date=2024-02&rft.volume=51&rft.issue=2&rft.spage=1263&rft.epage=1276&rft.pages=1263-1276&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.16636&rft_dat=%3Cproquest_cross%3E2847745925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847745925&rft_id=info:pmid/37552522&rfr_iscdi=true