A new algorithm for Kohonen layer learning with application to power system stability analysis
In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics man and cybernetics. Part B, Cybernetics, 1997-12, Vol.27 (6), p.1030-1034 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1034 |
---|---|
container_issue | 6 |
container_start_page | 1030 |
container_title | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics |
container_volume | 27 |
creator | Young Moon Park Gwang-Won Kim Hong-Shik Cho Lee, K.Y. |
description | In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest neighbor, the codebook vectors away from the decision boundaries are redundant. This paper presents an alternative algorithm called boundary search algorithm (BSA) for the purpose of solving this redundancy problem. The BSA finds a fixed number of codebook vectors near decision boundaries by selecting appropriate training vectors. It is found to be more efficient compared with LVQ and its validity is demonstrated with satisfaction in the transient stability analysis of a power system. |
doi_str_mv | 10.1109/3477.650064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28474315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>650064</ieee_id><sourcerecordid>28992145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-aef67e27c0d7cc2fd0d427cfe93bb72dd6e249569433cb9fa752cf7b4745330d3</originalsourceid><addsrcrecordid>eNqN0b1LxDAYBvAgih-nk5uDZNJBeuarzWU8xC8UXHS1pOlbjaRNTXoc_e_NcYdu6pSE_N4nkAehY0qmlBJ1yYWU0yInpBBbaJ8qQTMiFNtOezLjmRBU7aGDGD8IIYoouYv26IwVPA3vo9c57mCJtXvzwQ7vLW58wA_-3XfQYadHCNiBDp3t3vAyAaz73lmjB-s7PHjc-2UicYwDtDgOurLODiPWnXZjtPEQ7TTaRTjarBP0cnP9fHWXPT7d3l_NHzPD1WzINDSFBCYNqaUxrKlJLdKpAcWrSrK6LoAJlRdKcG4q1WiZM9PISkiRc05qPkHn69w--M8FxKFsbTTgnO7AL2IpuWB5wZhM8uxXyWZKMZpi_4bpdU7_AfOCMp4-fIIu1tAEH2OApuyDbXUYS0rKVZXlqspyXWXSp5vYRdVC_WM33SVwsgYWAL6vN9NfMVehow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25612326</pqid></control><display><type>article</type><title>A new algorithm for Kohonen layer learning with application to power system stability analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Young Moon Park ; Gwang-Won Kim ; Hong-Shik Cho ; Lee, K.Y.</creator><creatorcontrib>Young Moon Park ; Gwang-Won Kim ; Hong-Shik Cho ; Lee, K.Y.</creatorcontrib><description>In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest neighbor, the codebook vectors away from the decision boundaries are redundant. This paper presents an alternative algorithm called boundary search algorithm (BSA) for the purpose of solving this redundancy problem. The BSA finds a fixed number of codebook vectors near decision boundaries by selecting appropriate training vectors. It is found to be more efficient compared with LVQ and its validity is demonstrated with satisfaction in the transient stability analysis of a power system.</description><identifier>ISSN: 1083-4419</identifier><identifier>EISSN: 1941-0492</identifier><identifier>DOI: 10.1109/3477.650064</identifier><identifier>PMID: 18263110</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Nearest neighbor searches ; Pattern analysis ; Power system analysis computing ; Power system stability ; Power system transients ; Stability analysis ; Transient analysis ; Vector quantization</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part B, Cybernetics, 1997-12, Vol.27 (6), p.1030-1034</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-aef67e27c0d7cc2fd0d427cfe93bb72dd6e249569433cb9fa752cf7b4745330d3</citedby><cites>FETCH-LOGICAL-c398t-aef67e27c0d7cc2fd0d427cfe93bb72dd6e249569433cb9fa752cf7b4745330d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/650064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/650064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18263110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young Moon Park</creatorcontrib><creatorcontrib>Gwang-Won Kim</creatorcontrib><creatorcontrib>Hong-Shik Cho</creatorcontrib><creatorcontrib>Lee, K.Y.</creatorcontrib><title>A new algorithm for Kohonen layer learning with application to power system stability analysis</title><title>IEEE transactions on systems, man and cybernetics. Part B, Cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest neighbor, the codebook vectors away from the decision boundaries are redundant. This paper presents an alternative algorithm called boundary search algorithm (BSA) for the purpose of solving this redundancy problem. The BSA finds a fixed number of codebook vectors near decision boundaries by selecting appropriate training vectors. It is found to be more efficient compared with LVQ and its validity is demonstrated with satisfaction in the transient stability analysis of a power system.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Nearest neighbor searches</subject><subject>Pattern analysis</subject><subject>Power system analysis computing</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>Stability analysis</subject><subject>Transient analysis</subject><subject>Vector quantization</subject><issn>1083-4419</issn><issn>1941-0492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0b1LxDAYBvAgih-nk5uDZNJBeuarzWU8xC8UXHS1pOlbjaRNTXoc_e_NcYdu6pSE_N4nkAehY0qmlBJ1yYWU0yInpBBbaJ8qQTMiFNtOezLjmRBU7aGDGD8IIYoouYv26IwVPA3vo9c57mCJtXvzwQ7vLW58wA_-3XfQYadHCNiBDp3t3vAyAaz73lmjB-s7PHjc-2UicYwDtDgOurLODiPWnXZjtPEQ7TTaRTjarBP0cnP9fHWXPT7d3l_NHzPD1WzINDSFBCYNqaUxrKlJLdKpAcWrSrK6LoAJlRdKcG4q1WiZM9PISkiRc05qPkHn69w--M8FxKFsbTTgnO7AL2IpuWB5wZhM8uxXyWZKMZpi_4bpdU7_AfOCMp4-fIIu1tAEH2OApuyDbXUYS0rKVZXlqspyXWXSp5vYRdVC_WM33SVwsgYWAL6vN9NfMVehow</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Young Moon Park</creator><creator>Gwang-Won Kim</creator><creator>Hong-Shik Cho</creator><creator>Lee, K.Y.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>7X8</scope></search><sort><creationdate>19971201</creationdate><title>A new algorithm for Kohonen layer learning with application to power system stability analysis</title><author>Young Moon Park ; Gwang-Won Kim ; Hong-Shik Cho ; Lee, K.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-aef67e27c0d7cc2fd0d427cfe93bb72dd6e249569433cb9fa752cf7b4745330d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Nearest neighbor searches</topic><topic>Pattern analysis</topic><topic>Power system analysis computing</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>Stability analysis</topic><topic>Transient analysis</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Young Moon Park</creatorcontrib><creatorcontrib>Gwang-Won Kim</creatorcontrib><creatorcontrib>Hong-Shik Cho</creatorcontrib><creatorcontrib>Lee, K.Y.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part B, Cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Young Moon Park</au><au>Gwang-Won Kim</au><au>Hong-Shik Cho</au><au>Lee, K.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new algorithm for Kohonen layer learning with application to power system stability analysis</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part B, Cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>1997-12-01</date><risdate>1997</risdate><volume>27</volume><issue>6</issue><spage>1030</spage><epage>1034</epage><pages>1030-1034</pages><issn>1083-4419</issn><eissn>1941-0492</eissn><coden>ITSCFI</coden><abstract>In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest neighbor, the codebook vectors away from the decision boundaries are redundant. This paper presents an alternative algorithm called boundary search algorithm (BSA) for the purpose of solving this redundancy problem. The BSA finds a fixed number of codebook vectors near decision boundaries by selecting appropriate training vectors. It is found to be more efficient compared with LVQ and its validity is demonstrated with satisfaction in the transient stability analysis of a power system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18263110</pmid><doi>10.1109/3477.650064</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics, 1997-12, Vol.27 (6), p.1030-1034 |
issn | 1083-4419 1941-0492 |
language | eng |
recordid | cdi_proquest_miscellaneous_28474315 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Clustering algorithms Nearest neighbor searches Pattern analysis Power system analysis computing Power system stability Power system transients Stability analysis Transient analysis Vector quantization |
title | A new algorithm for Kohonen layer learning with application to power system stability analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20algorithm%20for%20Kohonen%20layer%20learning%20with%20application%20to%20power%20system%20stability%20analysis&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20B,%20Cybernetics&rft.au=Young%20Moon%20Park&rft.date=1997-12-01&rft.volume=27&rft.issue=6&rft.spage=1030&rft.epage=1034&rft.pages=1030-1034&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/3477.650064&rft_dat=%3Cproquest_RIE%3E28992145%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25612326&rft_id=info:pmid/18263110&rft_ieee_id=650064&rfr_iscdi=true |