A new algorithm for Kohonen layer learning with application to power system stability analysis

In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part B, Cybernetics man and cybernetics. Part B, Cybernetics, 1997-12, Vol.27 (6), p.1030-1034
Hauptverfasser: Young Moon Park, Gwang-Won Kim, Hong-Shik Cho, Lee, K.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1034
container_issue 6
container_start_page 1030
container_title IEEE transactions on systems, man and cybernetics. Part B, Cybernetics
container_volume 27
creator Young Moon Park
Gwang-Won Kim
Hong-Shik Cho
Lee, K.Y.
description In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest neighbor, the codebook vectors away from the decision boundaries are redundant. This paper presents an alternative algorithm called boundary search algorithm (BSA) for the purpose of solving this redundancy problem. The BSA finds a fixed number of codebook vectors near decision boundaries by selecting appropriate training vectors. It is found to be more efficient compared with LVQ and its validity is demonstrated with satisfaction in the transient stability analysis of a power system.
doi_str_mv 10.1109/3477.650064
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28474315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>650064</ieee_id><sourcerecordid>28992145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-aef67e27c0d7cc2fd0d427cfe93bb72dd6e249569433cb9fa752cf7b4745330d3</originalsourceid><addsrcrecordid>eNqN0b1LxDAYBvAgih-nk5uDZNJBeuarzWU8xC8UXHS1pOlbjaRNTXoc_e_NcYdu6pSE_N4nkAehY0qmlBJ1yYWU0yInpBBbaJ8qQTMiFNtOezLjmRBU7aGDGD8IIYoouYv26IwVPA3vo9c57mCJtXvzwQ7vLW58wA_-3XfQYadHCNiBDp3t3vAyAaz73lmjB-s7PHjc-2UicYwDtDgOurLODiPWnXZjtPEQ7TTaRTjarBP0cnP9fHWXPT7d3l_NHzPD1WzINDSFBCYNqaUxrKlJLdKpAcWrSrK6LoAJlRdKcG4q1WiZM9PISkiRc05qPkHn69w--M8FxKFsbTTgnO7AL2IpuWB5wZhM8uxXyWZKMZpi_4bpdU7_AfOCMp4-fIIu1tAEH2OApuyDbXUYS0rKVZXlqspyXWXSp5vYRdVC_WM33SVwsgYWAL6vN9NfMVehow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25612326</pqid></control><display><type>article</type><title>A new algorithm for Kohonen layer learning with application to power system stability analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Young Moon Park ; Gwang-Won Kim ; Hong-Shik Cho ; Lee, K.Y.</creator><creatorcontrib>Young Moon Park ; Gwang-Won Kim ; Hong-Shik Cho ; Lee, K.Y.</creatorcontrib><description>In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest neighbor, the codebook vectors away from the decision boundaries are redundant. This paper presents an alternative algorithm called boundary search algorithm (BSA) for the purpose of solving this redundancy problem. The BSA finds a fixed number of codebook vectors near decision boundaries by selecting appropriate training vectors. It is found to be more efficient compared with LVQ and its validity is demonstrated with satisfaction in the transient stability analysis of a power system.</description><identifier>ISSN: 1083-4419</identifier><identifier>EISSN: 1941-0492</identifier><identifier>DOI: 10.1109/3477.650064</identifier><identifier>PMID: 18263110</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Nearest neighbor searches ; Pattern analysis ; Power system analysis computing ; Power system stability ; Power system transients ; Stability analysis ; Transient analysis ; Vector quantization</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part B, Cybernetics, 1997-12, Vol.27 (6), p.1030-1034</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-aef67e27c0d7cc2fd0d427cfe93bb72dd6e249569433cb9fa752cf7b4745330d3</citedby><cites>FETCH-LOGICAL-c398t-aef67e27c0d7cc2fd0d427cfe93bb72dd6e249569433cb9fa752cf7b4745330d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/650064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/650064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18263110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young Moon Park</creatorcontrib><creatorcontrib>Gwang-Won Kim</creatorcontrib><creatorcontrib>Hong-Shik Cho</creatorcontrib><creatorcontrib>Lee, K.Y.</creatorcontrib><title>A new algorithm for Kohonen layer learning with application to power system stability analysis</title><title>IEEE transactions on systems, man and cybernetics. Part B, Cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest neighbor, the codebook vectors away from the decision boundaries are redundant. This paper presents an alternative algorithm called boundary search algorithm (BSA) for the purpose of solving this redundancy problem. The BSA finds a fixed number of codebook vectors near decision boundaries by selecting appropriate training vectors. It is found to be more efficient compared with LVQ and its validity is demonstrated with satisfaction in the transient stability analysis of a power system.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Nearest neighbor searches</subject><subject>Pattern analysis</subject><subject>Power system analysis computing</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>Stability analysis</subject><subject>Transient analysis</subject><subject>Vector quantization</subject><issn>1083-4419</issn><issn>1941-0492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0b1LxDAYBvAgih-nk5uDZNJBeuarzWU8xC8UXHS1pOlbjaRNTXoc_e_NcYdu6pSE_N4nkAehY0qmlBJ1yYWU0yInpBBbaJ8qQTMiFNtOezLjmRBU7aGDGD8IIYoouYv26IwVPA3vo9c57mCJtXvzwQ7vLW58wA_-3XfQYadHCNiBDp3t3vAyAaz73lmjB-s7PHjc-2UicYwDtDgOurLODiPWnXZjtPEQ7TTaRTjarBP0cnP9fHWXPT7d3l_NHzPD1WzINDSFBCYNqaUxrKlJLdKpAcWrSrK6LoAJlRdKcG4q1WiZM9PISkiRc05qPkHn69w--M8FxKFsbTTgnO7AL2IpuWB5wZhM8uxXyWZKMZpi_4bpdU7_AfOCMp4-fIIu1tAEH2OApuyDbXUYS0rKVZXlqspyXWXSp5vYRdVC_WM33SVwsgYWAL6vN9NfMVehow</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Young Moon Park</creator><creator>Gwang-Won Kim</creator><creator>Hong-Shik Cho</creator><creator>Lee, K.Y.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>H8D</scope><scope>7X8</scope></search><sort><creationdate>19971201</creationdate><title>A new algorithm for Kohonen layer learning with application to power system stability analysis</title><author>Young Moon Park ; Gwang-Won Kim ; Hong-Shik Cho ; Lee, K.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-aef67e27c0d7cc2fd0d427cfe93bb72dd6e249569433cb9fa752cf7b4745330d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Nearest neighbor searches</topic><topic>Pattern analysis</topic><topic>Power system analysis computing</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>Stability analysis</topic><topic>Transient analysis</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Young Moon Park</creatorcontrib><creatorcontrib>Gwang-Won Kim</creatorcontrib><creatorcontrib>Hong-Shik Cho</creatorcontrib><creatorcontrib>Lee, K.Y.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part B, Cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Young Moon Park</au><au>Gwang-Won Kim</au><au>Hong-Shik Cho</au><au>Lee, K.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new algorithm for Kohonen layer learning with application to power system stability analysis</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part B, Cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>1997-12-01</date><risdate>1997</risdate><volume>27</volume><issue>6</issue><spage>1030</spage><epage>1034</epage><pages>1030-1034</pages><issn>1083-4419</issn><eissn>1941-0492</eissn><coden>ITSCFI</coden><abstract>In certain classification problems, input patterns are not distributed in a clustering manner but distributed uniformly in an input space and there exist certain critical hyperplanes called decision boundaries. Since learning vector quantization (LVQ) classifies an input vector based on the nearest neighbor, the codebook vectors away from the decision boundaries are redundant. This paper presents an alternative algorithm called boundary search algorithm (BSA) for the purpose of solving this redundancy problem. The BSA finds a fixed number of codebook vectors near decision boundaries by selecting appropriate training vectors. It is found to be more efficient compared with LVQ and its validity is demonstrated with satisfaction in the transient stability analysis of a power system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18263110</pmid><doi>10.1109/3477.650064</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on systems, man and cybernetics. Part B, Cybernetics, 1997-12, Vol.27 (6), p.1030-1034
issn 1083-4419
1941-0492
language eng
recordid cdi_proquest_miscellaneous_28474315
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Clustering algorithms
Nearest neighbor searches
Pattern analysis
Power system analysis computing
Power system stability
Power system transients
Stability analysis
Transient analysis
Vector quantization
title A new algorithm for Kohonen layer learning with application to power system stability analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20algorithm%20for%20Kohonen%20layer%20learning%20with%20application%20to%20power%20system%20stability%20analysis&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20B,%20Cybernetics&rft.au=Young%20Moon%20Park&rft.date=1997-12-01&rft.volume=27&rft.issue=6&rft.spage=1030&rft.epage=1034&rft.pages=1030-1034&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/3477.650064&rft_dat=%3Cproquest_RIE%3E28992145%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25612326&rft_id=info:pmid/18263110&rft_ieee_id=650064&rfr_iscdi=true