Gliptins normalize posttraumatic hippocampal neurogenesis and restore cognitive function after controlled cortical impact on sensorimotor cortex

Traumatic brain injury (TBI) often leads to long-term neurocognitive dysfunctions. Adult neurogenesis in the hippocampal dentate gyrus (DG) serves critical functions in cognition but can be disrupted by brain injury and insult in serval forms. In the present study, we explore the cellular and molecu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2023-09, Vol.165, p.115270-115270, Article 115270
Hauptverfasser: Hung, Yu-Wen, Lu, Guan-Ling, Chen, Hwei-Hsien, Tung, Hsiu-Hui, Lee, Sheau-Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115270
container_issue
container_start_page 115270
container_title Biomedicine & pharmacotherapy
container_volume 165
creator Hung, Yu-Wen
Lu, Guan-Ling
Chen, Hwei-Hsien
Tung, Hsiu-Hui
Lee, Sheau-Ling
description Traumatic brain injury (TBI) often leads to long-term neurocognitive dysfunctions. Adult neurogenesis in the hippocampal dentate gyrus (DG) serves critical functions in cognition but can be disrupted by brain injury and insult in serval forms. In the present study, we explore the cellular and molecular targets of DPP-4 inhibitors (or gliptins) as related to hippocampal function and TBI cognitive sequelae. Two structurally different gliptins, sitagliptin and vildagliptin, were examined using a controlled cortical impact (CCI) model of moderate TBI in mice. Sensorimotor CCI, although distal from the hippocampus, impaired hippocampal-dependent cognition without obvious hippocampal tissue destruction. Neurogenic cell proliferation in the DG was increased accompanied by large numbers of reactive astrocyte. Increased numbers of immature granule cells with abnormal dendritic outgrowth were ectopically localized in the outer granule cell layer (GCL) and hilus. Long-term potentiation of dentate immature granule cells was also impaired. Both sitagliptin and vildagliptin attenuated the CCI-induced ectopic migration of doublecortin-positive immature neurons into the outer GCL and hilus, restored the normal dendritic branching pattern of the immature neurons and prevented astrocyte reactivation. Both gliptins prevented loss of normal synaptic integration in the DG after sensorimotor CCI and improved cognitive behavior. Sensorimotor cortical injury thus results in an abnormal neurogenesis pattern and astrocyte reactivation in the distal hippocampus which appears to contribute to the development of cognitive dysfunction after TBI. DPP-4 inhibitors prevent astrocyte reactivation, normalize the posttraumatic hippocampal neurogenesis and help to maintain normal electrophysiology in the DG with positive behavioral effect in a mouse model. •Sensorimotor cortical injury distally impairs hippocampal-dependent cognition.•TBI-increased neurogenesis adversely affects long-term cognition.•TBI induces abnormal localization and complex dendritic pattern of immature neurons.•TBI induces hypertrophic astrocyte processes which facilitate aberrant neurogenesis.•Gliptins normalize post-TBI hippocampal neurogenesis, restore hippocampal function.
doi_str_mv 10.1016/j.biopha.2023.115270
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2847345119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0753332223010612</els_id><sourcerecordid>2847345119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-43976668c06f8680bed2ab354bdab68efac8d6959501278e3b4c585a921ff4543</originalsourceid><addsrcrecordid>eNp9kctO3TAQhq2Kqhxo36CqvGSTU9_jbCpVqAUkpG7ateU4E_BRYqe2g4Cn6CPXNJQlqxlpvvnn8iP0kZI9JVR9Pux7H5dbu2eE8T2lkrXkDdrRTpJGEdIeoR1pJW84Z-wYneR8IIRIxfU7dMxbKQTTZIf-XEx-KT5kHGKa7eQfAS8xl5LsOtviHb71yxKdnRc74QBrijcQIPuMbRhwglxiAuziTfDF3wEe1-CKjwHbsUCqhVBSnCYYapqqXlXxVcsVXJkMIcfk51hF_tXh_j16O9opw4fneIp-ff_28_yyuf5xcXX-9bpxXLalEbxrlVLaETVqpUkPA7M9l6IfbK80jNbpQXWyfoOyVgPvhZNa2o7RcRRS8FN0tukuKf5e6xlm9tnBNNkAcc2GadFyISntKio21KWYc4LRLHVnmx4MJebJC3MwmxfmyQuzeVHbPj1PWPsZhpem_8-vwJcNgHrnnYdksvMQHAw-gStmiP71CX8BP-6hDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847345119</pqid></control><display><type>article</type><title>Gliptins normalize posttraumatic hippocampal neurogenesis and restore cognitive function after controlled cortical impact on sensorimotor cortex</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hung, Yu-Wen ; Lu, Guan-Ling ; Chen, Hwei-Hsien ; Tung, Hsiu-Hui ; Lee, Sheau-Ling</creator><creatorcontrib>Hung, Yu-Wen ; Lu, Guan-Ling ; Chen, Hwei-Hsien ; Tung, Hsiu-Hui ; Lee, Sheau-Ling</creatorcontrib><description>Traumatic brain injury (TBI) often leads to long-term neurocognitive dysfunctions. Adult neurogenesis in the hippocampal dentate gyrus (DG) serves critical functions in cognition but can be disrupted by brain injury and insult in serval forms. In the present study, we explore the cellular and molecular targets of DPP-4 inhibitors (or gliptins) as related to hippocampal function and TBI cognitive sequelae. Two structurally different gliptins, sitagliptin and vildagliptin, were examined using a controlled cortical impact (CCI) model of moderate TBI in mice. Sensorimotor CCI, although distal from the hippocampus, impaired hippocampal-dependent cognition without obvious hippocampal tissue destruction. Neurogenic cell proliferation in the DG was increased accompanied by large numbers of reactive astrocyte. Increased numbers of immature granule cells with abnormal dendritic outgrowth were ectopically localized in the outer granule cell layer (GCL) and hilus. Long-term potentiation of dentate immature granule cells was also impaired. Both sitagliptin and vildagliptin attenuated the CCI-induced ectopic migration of doublecortin-positive immature neurons into the outer GCL and hilus, restored the normal dendritic branching pattern of the immature neurons and prevented astrocyte reactivation. Both gliptins prevented loss of normal synaptic integration in the DG after sensorimotor CCI and improved cognitive behavior. Sensorimotor cortical injury thus results in an abnormal neurogenesis pattern and astrocyte reactivation in the distal hippocampus which appears to contribute to the development of cognitive dysfunction after TBI. DPP-4 inhibitors prevent astrocyte reactivation, normalize the posttraumatic hippocampal neurogenesis and help to maintain normal electrophysiology in the DG with positive behavioral effect in a mouse model. •Sensorimotor cortical injury distally impairs hippocampal-dependent cognition.•TBI-increased neurogenesis adversely affects long-term cognition.•TBI induces abnormal localization and complex dendritic pattern of immature neurons.•TBI induces hypertrophic astrocyte processes which facilitate aberrant neurogenesis.•Gliptins normalize post-TBI hippocampal neurogenesis, restore hippocampal function.</description><identifier>ISSN: 0753-3322</identifier><identifier>EISSN: 1950-6007</identifier><identifier>DOI: 10.1016/j.biopha.2023.115270</identifier><identifier>PMID: 37544280</identifier><language>eng</language><publisher>France: Elsevier Masson SAS</publisher><subject>Cognitive dysfunction ; Drug reposition ; Hippocampal neurogenesis ; Sitagliptin ; Traumatic brain injury ; Vildagliptin</subject><ispartof>Biomedicine &amp; pharmacotherapy, 2023-09, Vol.165, p.115270-115270, Article 115270</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023. Published by Elsevier Masson SAS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-43976668c06f8680bed2ab354bdab68efac8d6959501278e3b4c585a921ff4543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biopha.2023.115270$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37544280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hung, Yu-Wen</creatorcontrib><creatorcontrib>Lu, Guan-Ling</creatorcontrib><creatorcontrib>Chen, Hwei-Hsien</creatorcontrib><creatorcontrib>Tung, Hsiu-Hui</creatorcontrib><creatorcontrib>Lee, Sheau-Ling</creatorcontrib><title>Gliptins normalize posttraumatic hippocampal neurogenesis and restore cognitive function after controlled cortical impact on sensorimotor cortex</title><title>Biomedicine &amp; pharmacotherapy</title><addtitle>Biomed Pharmacother</addtitle><description>Traumatic brain injury (TBI) often leads to long-term neurocognitive dysfunctions. Adult neurogenesis in the hippocampal dentate gyrus (DG) serves critical functions in cognition but can be disrupted by brain injury and insult in serval forms. In the present study, we explore the cellular and molecular targets of DPP-4 inhibitors (or gliptins) as related to hippocampal function and TBI cognitive sequelae. Two structurally different gliptins, sitagliptin and vildagliptin, were examined using a controlled cortical impact (CCI) model of moderate TBI in mice. Sensorimotor CCI, although distal from the hippocampus, impaired hippocampal-dependent cognition without obvious hippocampal tissue destruction. Neurogenic cell proliferation in the DG was increased accompanied by large numbers of reactive astrocyte. Increased numbers of immature granule cells with abnormal dendritic outgrowth were ectopically localized in the outer granule cell layer (GCL) and hilus. Long-term potentiation of dentate immature granule cells was also impaired. Both sitagliptin and vildagliptin attenuated the CCI-induced ectopic migration of doublecortin-positive immature neurons into the outer GCL and hilus, restored the normal dendritic branching pattern of the immature neurons and prevented astrocyte reactivation. Both gliptins prevented loss of normal synaptic integration in the DG after sensorimotor CCI and improved cognitive behavior. Sensorimotor cortical injury thus results in an abnormal neurogenesis pattern and astrocyte reactivation in the distal hippocampus which appears to contribute to the development of cognitive dysfunction after TBI. DPP-4 inhibitors prevent astrocyte reactivation, normalize the posttraumatic hippocampal neurogenesis and help to maintain normal electrophysiology in the DG with positive behavioral effect in a mouse model. •Sensorimotor cortical injury distally impairs hippocampal-dependent cognition.•TBI-increased neurogenesis adversely affects long-term cognition.•TBI induces abnormal localization and complex dendritic pattern of immature neurons.•TBI induces hypertrophic astrocyte processes which facilitate aberrant neurogenesis.•Gliptins normalize post-TBI hippocampal neurogenesis, restore hippocampal function.</description><subject>Cognitive dysfunction</subject><subject>Drug reposition</subject><subject>Hippocampal neurogenesis</subject><subject>Sitagliptin</subject><subject>Traumatic brain injury</subject><subject>Vildagliptin</subject><issn>0753-3322</issn><issn>1950-6007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctO3TAQhq2Kqhxo36CqvGSTU9_jbCpVqAUkpG7ateU4E_BRYqe2g4Cn6CPXNJQlqxlpvvnn8iP0kZI9JVR9Pux7H5dbu2eE8T2lkrXkDdrRTpJGEdIeoR1pJW84Z-wYneR8IIRIxfU7dMxbKQTTZIf-XEx-KT5kHGKa7eQfAS8xl5LsOtviHb71yxKdnRc74QBrijcQIPuMbRhwglxiAuziTfDF3wEe1-CKjwHbsUCqhVBSnCYYapqqXlXxVcsVXJkMIcfk51hF_tXh_j16O9opw4fneIp-ff_28_yyuf5xcXX-9bpxXLalEbxrlVLaETVqpUkPA7M9l6IfbK80jNbpQXWyfoOyVgPvhZNa2o7RcRRS8FN0tukuKf5e6xlm9tnBNNkAcc2GadFyISntKio21KWYc4LRLHVnmx4MJebJC3MwmxfmyQuzeVHbPj1PWPsZhpem_8-vwJcNgHrnnYdksvMQHAw-gStmiP71CX8BP-6hDQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hung, Yu-Wen</creator><creator>Lu, Guan-Ling</creator><creator>Chen, Hwei-Hsien</creator><creator>Tung, Hsiu-Hui</creator><creator>Lee, Sheau-Ling</creator><general>Elsevier Masson SAS</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230901</creationdate><title>Gliptins normalize posttraumatic hippocampal neurogenesis and restore cognitive function after controlled cortical impact on sensorimotor cortex</title><author>Hung, Yu-Wen ; Lu, Guan-Ling ; Chen, Hwei-Hsien ; Tung, Hsiu-Hui ; Lee, Sheau-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-43976668c06f8680bed2ab354bdab68efac8d6959501278e3b4c585a921ff4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cognitive dysfunction</topic><topic>Drug reposition</topic><topic>Hippocampal neurogenesis</topic><topic>Sitagliptin</topic><topic>Traumatic brain injury</topic><topic>Vildagliptin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Yu-Wen</creatorcontrib><creatorcontrib>Lu, Guan-Ling</creatorcontrib><creatorcontrib>Chen, Hwei-Hsien</creatorcontrib><creatorcontrib>Tung, Hsiu-Hui</creatorcontrib><creatorcontrib>Lee, Sheau-Ling</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedicine &amp; pharmacotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Yu-Wen</au><au>Lu, Guan-Ling</au><au>Chen, Hwei-Hsien</au><au>Tung, Hsiu-Hui</au><au>Lee, Sheau-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gliptins normalize posttraumatic hippocampal neurogenesis and restore cognitive function after controlled cortical impact on sensorimotor cortex</atitle><jtitle>Biomedicine &amp; pharmacotherapy</jtitle><addtitle>Biomed Pharmacother</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>165</volume><spage>115270</spage><epage>115270</epage><pages>115270-115270</pages><artnum>115270</artnum><issn>0753-3322</issn><eissn>1950-6007</eissn><abstract>Traumatic brain injury (TBI) often leads to long-term neurocognitive dysfunctions. Adult neurogenesis in the hippocampal dentate gyrus (DG) serves critical functions in cognition but can be disrupted by brain injury and insult in serval forms. In the present study, we explore the cellular and molecular targets of DPP-4 inhibitors (or gliptins) as related to hippocampal function and TBI cognitive sequelae. Two structurally different gliptins, sitagliptin and vildagliptin, were examined using a controlled cortical impact (CCI) model of moderate TBI in mice. Sensorimotor CCI, although distal from the hippocampus, impaired hippocampal-dependent cognition without obvious hippocampal tissue destruction. Neurogenic cell proliferation in the DG was increased accompanied by large numbers of reactive astrocyte. Increased numbers of immature granule cells with abnormal dendritic outgrowth were ectopically localized in the outer granule cell layer (GCL) and hilus. Long-term potentiation of dentate immature granule cells was also impaired. Both sitagliptin and vildagliptin attenuated the CCI-induced ectopic migration of doublecortin-positive immature neurons into the outer GCL and hilus, restored the normal dendritic branching pattern of the immature neurons and prevented astrocyte reactivation. Both gliptins prevented loss of normal synaptic integration in the DG after sensorimotor CCI and improved cognitive behavior. Sensorimotor cortical injury thus results in an abnormal neurogenesis pattern and astrocyte reactivation in the distal hippocampus which appears to contribute to the development of cognitive dysfunction after TBI. DPP-4 inhibitors prevent astrocyte reactivation, normalize the posttraumatic hippocampal neurogenesis and help to maintain normal electrophysiology in the DG with positive behavioral effect in a mouse model. •Sensorimotor cortical injury distally impairs hippocampal-dependent cognition.•TBI-increased neurogenesis adversely affects long-term cognition.•TBI induces abnormal localization and complex dendritic pattern of immature neurons.•TBI induces hypertrophic astrocyte processes which facilitate aberrant neurogenesis.•Gliptins normalize post-TBI hippocampal neurogenesis, restore hippocampal function.</abstract><cop>France</cop><pub>Elsevier Masson SAS</pub><pmid>37544280</pmid><doi>10.1016/j.biopha.2023.115270</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0753-3322
ispartof Biomedicine & pharmacotherapy, 2023-09, Vol.165, p.115270-115270, Article 115270
issn 0753-3322
1950-6007
language eng
recordid cdi_proquest_miscellaneous_2847345119
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cognitive dysfunction
Drug reposition
Hippocampal neurogenesis
Sitagliptin
Traumatic brain injury
Vildagliptin
title Gliptins normalize posttraumatic hippocampal neurogenesis and restore cognitive function after controlled cortical impact on sensorimotor cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gliptins%20normalize%20posttraumatic%20hippocampal%20neurogenesis%20and%20restore%20cognitive%20function%20after%20controlled%20cortical%20impact%20on%20sensorimotor%20cortex&rft.jtitle=Biomedicine%20&%20pharmacotherapy&rft.au=Hung,%20Yu-Wen&rft.date=2023-09-01&rft.volume=165&rft.spage=115270&rft.epage=115270&rft.pages=115270-115270&rft.artnum=115270&rft.issn=0753-3322&rft.eissn=1950-6007&rft_id=info:doi/10.1016/j.biopha.2023.115270&rft_dat=%3Cproquest_cross%3E2847345119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847345119&rft_id=info:pmid/37544280&rft_els_id=S0753332223010612&rfr_iscdi=true