A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase

The general synthesis of metal–silicon mixed-oxide nanocomposite materials, including a variety of both main group and transition metals, in which the metal oxide is the major component is described. In a typical synthesis, the metal-oxide precursor, MClx·yH2O(x=2–6,y=0–7), was mixed with the silica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2004-12, Vol.350 (Complete), p.173-181
Hauptverfasser: Clapsaddle, Brady J., Sprehn, David W., Gash, Alexander E., Satcher Jr, Joe H., Simpson, Randall L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue Complete
container_start_page 173
container_title Journal of non-crystalline solids
container_volume 350
creator Clapsaddle, Brady J.
Sprehn, David W.
Gash, Alexander E.
Satcher Jr, Joe H.
Simpson, Randall L.
description The general synthesis of metal–silicon mixed-oxide nanocomposite materials, including a variety of both main group and transition metals, in which the metal oxide is the major component is described. In a typical synthesis, the metal-oxide precursor, MClx·yH2O(x=2–6,y=0–7), was mixed with the silica precursor, tetramethoxysilane (TMOS), in ethanol and gelled using an organic epoxide. The successful preparation of homogeneous, monolithic materials depended on the oxidation state of the metal as well as the epoxide chosen for gelation. The composition of the resulting materials was varied from M/Si=1–5 (mol/mol) by adjusting the amount of TMOS added to the initial metal-oxide precursor solution. Supercritical processing of the gels in CO2 resulted in monolithic, porous aerogel nanocomposite materials with surface areas ranging from 100–800m2g−1. The bulk materials are composed of metal oxide/silica particles that vary in size from 5–20nm depending on the epoxide used for gelation. Metal oxide and silica dispersion throughout the bulk material is extremely uniform on the nanoscale. The versatility and control of the synthesis method will be discussed as well as the properties of the resulting metal–silicon mixed oxide nanocomposite materials.
doi_str_mv 10.1016/j.jnoncrysol.2004.06.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28472557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309304008361</els_id><sourcerecordid>28472557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1273237952071af0bde0ab15158e2f4612c08d08756e5c7f02726668b13345253</originalsourceid><addsrcrecordid>eNqFkE2O1DAQhSMEEs3AHbyBXULZju1kOYz4k0ZiA2vL7VRoR4nduNyj6d3cgRtyEtJkpFlSm1rU995TvapiHBoOXL-fmimm6POZ0twIgLYB3YBQz6od74ys246L59UOQIhaQi9fVq-IJljHyG5XPVyzO8zkSpiRrRZ_Hn7_xJnROZYDUiCW06kgK4ktWNzlTGEOPkW2hHscWLoPA7LoYvJpOSYKBYmVgytsZYoLcdNtHDF3OSJb3JQyOx4c4evqxehmwjeP-6r68enj95sv9e23z19vrm9r34q-1FwYKaTplQDD3Qj7AcHtueKqQzG2mgsP3QCdURqVNyMII7TW3Z5L2Sqh5FX1bvM95vTrhFTsEsjjPLuI6URWdK0RSpkV7DbQ50SUcbTHHBaXz5aDvVRuJ_tUub1UbkFb-Jfx9jHDkXfzmF30gZ70WrZ9r-XKfdg4XB--C5gt-YDR4xAy-mKHFP4f9heJdaA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28472557</pqid></control><display><type>article</type><title>A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase</title><source>Elsevier ScienceDirect Journals</source><creator>Clapsaddle, Brady J. ; Sprehn, David W. ; Gash, Alexander E. ; Satcher Jr, Joe H. ; Simpson, Randall L.</creator><creatorcontrib>Clapsaddle, Brady J. ; Sprehn, David W. ; Gash, Alexander E. ; Satcher Jr, Joe H. ; Simpson, Randall L.</creatorcontrib><description>The general synthesis of metal–silicon mixed-oxide nanocomposite materials, including a variety of both main group and transition metals, in which the metal oxide is the major component is described. In a typical synthesis, the metal-oxide precursor, MClx·yH2O(x=2–6,y=0–7), was mixed with the silica precursor, tetramethoxysilane (TMOS), in ethanol and gelled using an organic epoxide. The successful preparation of homogeneous, monolithic materials depended on the oxidation state of the metal as well as the epoxide chosen for gelation. The composition of the resulting materials was varied from M/Si=1–5 (mol/mol) by adjusting the amount of TMOS added to the initial metal-oxide precursor solution. Supercritical processing of the gels in CO2 resulted in monolithic, porous aerogel nanocomposite materials with surface areas ranging from 100–800m2g−1. The bulk materials are composed of metal oxide/silica particles that vary in size from 5–20nm depending on the epoxide used for gelation. Metal oxide and silica dispersion throughout the bulk material is extremely uniform on the nanoscale. The versatility and control of the synthesis method will be discussed as well as the properties of the resulting metal–silicon mixed oxide nanocomposite materials.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2004.06.025</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical synthesis methods ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Physics</subject><ispartof>Journal of non-crystalline solids, 2004-12, Vol.350 (Complete), p.173-181</ispartof><rights>2004 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1273237952071af0bde0ab15158e2f4612c08d08756e5c7f02726668b13345253</citedby><cites>FETCH-LOGICAL-c429t-1273237952071af0bde0ab15158e2f4612c08d08756e5c7f02726668b13345253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022309304008361$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16349963$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Clapsaddle, Brady J.</creatorcontrib><creatorcontrib>Sprehn, David W.</creatorcontrib><creatorcontrib>Gash, Alexander E.</creatorcontrib><creatorcontrib>Satcher Jr, Joe H.</creatorcontrib><creatorcontrib>Simpson, Randall L.</creatorcontrib><title>A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase</title><title>Journal of non-crystalline solids</title><description>The general synthesis of metal–silicon mixed-oxide nanocomposite materials, including a variety of both main group and transition metals, in which the metal oxide is the major component is described. In a typical synthesis, the metal-oxide precursor, MClx·yH2O(x=2–6,y=0–7), was mixed with the silica precursor, tetramethoxysilane (TMOS), in ethanol and gelled using an organic epoxide. The successful preparation of homogeneous, monolithic materials depended on the oxidation state of the metal as well as the epoxide chosen for gelation. The composition of the resulting materials was varied from M/Si=1–5 (mol/mol) by adjusting the amount of TMOS added to the initial metal-oxide precursor solution. Supercritical processing of the gels in CO2 resulted in monolithic, porous aerogel nanocomposite materials with surface areas ranging from 100–800m2g−1. The bulk materials are composed of metal oxide/silica particles that vary in size from 5–20nm depending on the epoxide used for gelation. Metal oxide and silica dispersion throughout the bulk material is extremely uniform on the nanoscale. The versatility and control of the synthesis method will be discussed as well as the properties of the resulting metal–silicon mixed oxide nanocomposite materials.</description><subject>Chemical synthesis methods</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Physics</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE2O1DAQhSMEEs3AHbyBXULZju1kOYz4k0ZiA2vL7VRoR4nduNyj6d3cgRtyEtJkpFlSm1rU995TvapiHBoOXL-fmimm6POZ0twIgLYB3YBQz6od74ys246L59UOQIhaQi9fVq-IJljHyG5XPVyzO8zkSpiRrRZ_Hn7_xJnROZYDUiCW06kgK4ktWNzlTGEOPkW2hHscWLoPA7LoYvJpOSYKBYmVgytsZYoLcdNtHDF3OSJb3JQyOx4c4evqxehmwjeP-6r68enj95sv9e23z19vrm9r34q-1FwYKaTplQDD3Qj7AcHtueKqQzG2mgsP3QCdURqVNyMII7TW3Z5L2Sqh5FX1bvM95vTrhFTsEsjjPLuI6URWdK0RSpkV7DbQ50SUcbTHHBaXz5aDvVRuJ_tUub1UbkFb-Jfx9jHDkXfzmF30gZ70WrZ9r-XKfdg4XB--C5gt-YDR4xAy-mKHFP4f9heJdaA0</recordid><startdate>20041215</startdate><enddate>20041215</enddate><creator>Clapsaddle, Brady J.</creator><creator>Sprehn, David W.</creator><creator>Gash, Alexander E.</creator><creator>Satcher Jr, Joe H.</creator><creator>Simpson, Randall L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20041215</creationdate><title>A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase</title><author>Clapsaddle, Brady J. ; Sprehn, David W. ; Gash, Alexander E. ; Satcher Jr, Joe H. ; Simpson, Randall L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1273237952071af0bde0ab15158e2f4612c08d08756e5c7f02726668b13345253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Chemical synthesis methods</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clapsaddle, Brady J.</creatorcontrib><creatorcontrib>Sprehn, David W.</creatorcontrib><creatorcontrib>Gash, Alexander E.</creatorcontrib><creatorcontrib>Satcher Jr, Joe H.</creatorcontrib><creatorcontrib>Simpson, Randall L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clapsaddle, Brady J.</au><au>Sprehn, David W.</au><au>Gash, Alexander E.</au><au>Satcher Jr, Joe H.</au><au>Simpson, Randall L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2004-12-15</date><risdate>2004</risdate><volume>350</volume><issue>Complete</issue><spage>173</spage><epage>181</epage><pages>173-181</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>The general synthesis of metal–silicon mixed-oxide nanocomposite materials, including a variety of both main group and transition metals, in which the metal oxide is the major component is described. In a typical synthesis, the metal-oxide precursor, MClx·yH2O(x=2–6,y=0–7), was mixed with the silica precursor, tetramethoxysilane (TMOS), in ethanol and gelled using an organic epoxide. The successful preparation of homogeneous, monolithic materials depended on the oxidation state of the metal as well as the epoxide chosen for gelation. The composition of the resulting materials was varied from M/Si=1–5 (mol/mol) by adjusting the amount of TMOS added to the initial metal-oxide precursor solution. Supercritical processing of the gels in CO2 resulted in monolithic, porous aerogel nanocomposite materials with surface areas ranging from 100–800m2g−1. The bulk materials are composed of metal oxide/silica particles that vary in size from 5–20nm depending on the epoxide used for gelation. Metal oxide and silica dispersion throughout the bulk material is extremely uniform on the nanoscale. The versatility and control of the synthesis method will be discussed as well as the properties of the resulting metal–silicon mixed oxide nanocomposite materials.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2004.06.025</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2004-12, Vol.350 (Complete), p.173-181
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_28472557
source Elsevier ScienceDirect Journals
subjects Chemical synthesis methods
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Methods of nanofabrication
Physics
title A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20versatile%20sol%E2%80%93gel%20synthesis%20route%20to%20metal%E2%80%93silicon%20mixed%20oxide%20nanocomposites%20that%20contain%20metal%20oxides%20as%20the%20major%20phase&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Clapsaddle,%20Brady%20J.&rft.date=2004-12-15&rft.volume=350&rft.issue=Complete&rft.spage=173&rft.epage=181&rft.pages=173-181&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2004.06.025&rft_dat=%3Cproquest_cross%3E28472557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28472557&rft_id=info:pmid/&rft_els_id=S0022309304008361&rfr_iscdi=true