Diffusion coefficient of a passive contaminant in a local MHD model of a turbulent accretion disc

We calculate the radial diffusion coefficient for a passive contaminant in an accretion disc which is turbulent due to the action of the magnetorotational instability. Numerical magnetohydrodynamic (MHD) simulations are used to follow the evolution of a local patch of the disc using the shearing box...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2005-04, Vol.358 (3), p.1055-1060
Hauptverfasser: Carballido, Augusto, Stone, James M., Pringle, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1060
container_issue 3
container_start_page 1055
container_title Monthly notices of the Royal Astronomical Society
container_volume 358
creator Carballido, Augusto
Stone, James M.
Pringle, James E.
description We calculate the radial diffusion coefficient for a passive contaminant in an accretion disc which is turbulent due to the action of the magnetorotational instability. Numerical magnetohydrodynamic (MHD) simulations are used to follow the evolution of a local patch of the disc using the shearing box formalism. A separate continuity equation for the mass fraction of contaminant is integrated along with the MHD system, and radial profiles of this fraction are obtained as a function of time. Solutions of a linear diffusion equation are fitted to the numerical measured profiles of the contaminant, treating the diffusion coefficient D as the fitting parameter. At early times, the value of D is found to vary; however, once the contaminant is spread over scales comparable to the box size, it saturates at a steady value. The ratio of D to the transport coefficient of angular momentum due to shear stress is small. If D can be used as a proxy for the turbulent magnetic diffusivity, the effective magnetic Prandtl number Peff=ν/D (where ν is the coefficient of ‘effective viscosity’ associated with shear stress) would be large.
doi_str_mv 10.1111/j.1365-2966.2005.08850.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28472461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28472461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4970-1459b82fa5528f2ce6fa020ffabcf90a6e6392235d5e1e6d15a981b0b356aab53</originalsourceid><addsrcrecordid>eNqNkMlOwzAURS0EEqXwD9nALsFD7CQLFqgMRRQQiElsrBfXllzSpNgJlL_HIQi2eGNL9573rINQRHBCwjlcJIQJHtNCiIRizBOc5xwn6w00-g020QhjxuM8I2Qb7Xi_wBinjIoRghNrTOdtU0eq0cZYZXXdRo2JIFqB9_Zdh6BuYWlrCIGtQ1A1CqroanoSLZu5roZ227myq3oYlHK67UfOrVe7aMtA5fXezz1GD2en95NpPLs5v5gcz2KVFhmOScqLMqcGOKe5oUoLA5hiY6BUpsAgtGAFpYzPuSZazAmHIiclLhkXACVnY3QwzF255q3TvpXLsF1XFdS66bykeZrRVJBQzIeico33Thu5cnYJ7lMSLHunciF7dbJXJ3un8tupXAd0_2cH-KDAOKiV9X-8ELzoPzlGR0Pvw1b689_z5dX1Xf8KfDzw1rd6_cuDe5UiYxmX0-cXeX77-DRhk0s5Y1-daJnC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28472461</pqid></control><display><type>article</type><title>Diffusion coefficient of a passive contaminant in a local MHD model of a turbulent accretion disc</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford Journals Open Access Collection</source><creator>Carballido, Augusto ; Stone, James M. ; Pringle, James E.</creator><creatorcontrib>Carballido, Augusto ; Stone, James M. ; Pringle, James E.</creatorcontrib><description>We calculate the radial diffusion coefficient for a passive contaminant in an accretion disc which is turbulent due to the action of the magnetorotational instability. Numerical magnetohydrodynamic (MHD) simulations are used to follow the evolution of a local patch of the disc using the shearing box formalism. A separate continuity equation for the mass fraction of contaminant is integrated along with the MHD system, and radial profiles of this fraction are obtained as a function of time. Solutions of a linear diffusion equation are fitted to the numerical measured profiles of the contaminant, treating the diffusion coefficient D as the fitting parameter. At early times, the value of D is found to vary; however, once the contaminant is spread over scales comparable to the box size, it saturates at a steady value. The ratio of D to the transport coefficient of angular momentum due to shear stress is small. If D can be used as a proxy for the turbulent magnetic diffusivity, the effective magnetic Prandtl number Peff=ν/D (where ν is the coefficient of ‘effective viscosity’ associated with shear stress) would be large.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2005.08850.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>accretion ; accretion discs ; accretion, accretion discs ; MHD</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2005-04, Vol.358 (3), p.1055-1060</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4970-1459b82fa5528f2ce6fa020ffabcf90a6e6392235d5e1e6d15a981b0b356aab53</citedby><cites>FETCH-LOGICAL-c4970-1459b82fa5528f2ce6fa020ffabcf90a6e6392235d5e1e6d15a981b0b356aab53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2005.08850.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2005.08850.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16659922$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carballido, Augusto</creatorcontrib><creatorcontrib>Stone, James M.</creatorcontrib><creatorcontrib>Pringle, James E.</creatorcontrib><title>Diffusion coefficient of a passive contaminant in a local MHD model of a turbulent accretion disc</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>We calculate the radial diffusion coefficient for a passive contaminant in an accretion disc which is turbulent due to the action of the magnetorotational instability. Numerical magnetohydrodynamic (MHD) simulations are used to follow the evolution of a local patch of the disc using the shearing box formalism. A separate continuity equation for the mass fraction of contaminant is integrated along with the MHD system, and radial profiles of this fraction are obtained as a function of time. Solutions of a linear diffusion equation are fitted to the numerical measured profiles of the contaminant, treating the diffusion coefficient D as the fitting parameter. At early times, the value of D is found to vary; however, once the contaminant is spread over scales comparable to the box size, it saturates at a steady value. The ratio of D to the transport coefficient of angular momentum due to shear stress is small. If D can be used as a proxy for the turbulent magnetic diffusivity, the effective magnetic Prandtl number Peff=ν/D (where ν is the coefficient of ‘effective viscosity’ associated with shear stress) would be large.</description><subject>accretion</subject><subject>accretion discs</subject><subject>accretion, accretion discs</subject><subject>MHD</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkMlOwzAURS0EEqXwD9nALsFD7CQLFqgMRRQQiElsrBfXllzSpNgJlL_HIQi2eGNL9573rINQRHBCwjlcJIQJHtNCiIRizBOc5xwn6w00-g020QhjxuM8I2Qb7Xi_wBinjIoRghNrTOdtU0eq0cZYZXXdRo2JIFqB9_Zdh6BuYWlrCIGtQ1A1CqroanoSLZu5roZ227myq3oYlHK67UfOrVe7aMtA5fXezz1GD2en95NpPLs5v5gcz2KVFhmOScqLMqcGOKe5oUoLA5hiY6BUpsAgtGAFpYzPuSZazAmHIiclLhkXACVnY3QwzF255q3TvpXLsF1XFdS66bykeZrRVJBQzIeico33Thu5cnYJ7lMSLHunciF7dbJXJ3un8tupXAd0_2cH-KDAOKiV9X-8ELzoPzlGR0Pvw1b689_z5dX1Xf8KfDzw1rd6_cuDe5UiYxmX0-cXeX77-DRhk0s5Y1-daJnC</recordid><startdate>20050411</startdate><enddate>20050411</enddate><creator>Carballido, Augusto</creator><creator>Stone, James M.</creator><creator>Pringle, James E.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050411</creationdate><title>Diffusion coefficient of a passive contaminant in a local MHD model of a turbulent accretion disc</title><author>Carballido, Augusto ; Stone, James M. ; Pringle, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4970-1459b82fa5528f2ce6fa020ffabcf90a6e6392235d5e1e6d15a981b0b356aab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>accretion</topic><topic>accretion discs</topic><topic>accretion, accretion discs</topic><topic>MHD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carballido, Augusto</creatorcontrib><creatorcontrib>Stone, James M.</creatorcontrib><creatorcontrib>Pringle, James E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carballido, Augusto</au><au>Stone, James M.</au><au>Pringle, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion coefficient of a passive contaminant in a local MHD model of a turbulent accretion disc</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>2005-04-11</date><risdate>2005</risdate><volume>358</volume><issue>3</issue><spage>1055</spage><epage>1060</epage><pages>1055-1060</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>We calculate the radial diffusion coefficient for a passive contaminant in an accretion disc which is turbulent due to the action of the magnetorotational instability. Numerical magnetohydrodynamic (MHD) simulations are used to follow the evolution of a local patch of the disc using the shearing box formalism. A separate continuity equation for the mass fraction of contaminant is integrated along with the MHD system, and radial profiles of this fraction are obtained as a function of time. Solutions of a linear diffusion equation are fitted to the numerical measured profiles of the contaminant, treating the diffusion coefficient D as the fitting parameter. At early times, the value of D is found to vary; however, once the contaminant is spread over scales comparable to the box size, it saturates at a steady value. The ratio of D to the transport coefficient of angular momentum due to shear stress is small. If D can be used as a proxy for the turbulent magnetic diffusivity, the effective magnetic Prandtl number Peff=ν/D (where ν is the coefficient of ‘effective viscosity’ associated with shear stress) would be large.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2005.08850.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2005-04, Vol.358 (3), p.1055-1060
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_28472461
source Wiley Online Library Journals Frontfile Complete; Oxford Journals Open Access Collection
subjects accretion
accretion discs
accretion, accretion discs
MHD
title Diffusion coefficient of a passive contaminant in a local MHD model of a turbulent accretion disc
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20coefficient%20of%20a%20passive%20contaminant%20in%20a%20local%20MHD%20model%20of%20a%20turbulent%20accretion%20disc&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Carballido,%20Augusto&rft.date=2005-04-11&rft.volume=358&rft.issue=3&rft.spage=1055&rft.epage=1060&rft.pages=1055-1060&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2005.08850.x&rft_dat=%3Cproquest_cross%3E28472461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28472461&rft_id=info:pmid/&rfr_iscdi=true