Neural controllers for systems with unknown dynamics

This study presents a methodology for specifying a neural controller for a system about which no a priori model information is available. The neural design presumes that a finite duration input/output (I/O) histogram on the system is available. The design procedure extracts from the histogram suffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 1995-10, Vol.31 (4), p.1331-1340
Hauptverfasser: Porter, W.A., Wie Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1340
container_issue 4
container_start_page 1331
container_title IEEE transactions on aerospace and electronic systems
container_volume 31
creator Porter, W.A.
Wie Liu
description This study presents a methodology for specifying a neural controller for a system about which no a priori model information is available. The neural design presumes that a finite duration input/output (I/O) histogram on the system is available. The design procedure extracts from the histogram sufficient information to specify the neural feedback controller. The resultant controller will drive the system along a general output reference profile (unknown during the design). The resultant controller also exhibits the capability of disturbance rejection and the capacity to stabilize unstable plants.< >
doi_str_mv 10.1109/7.464354
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28472102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>464354</ieee_id><sourcerecordid>28472102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-9d5d359257165980dbfdfe123492cc6bdcf9bb9916f828d3018fbb33642a364b3</originalsourceid><addsrcrecordid>eNqNkMtLAzEQh4MoWKvg2dMeRLxszWvzOErxBUUveg5JNsHVfdTMLqX_vatbeu5lhmE-vhl-CF0SvCAE6zu54IKzgh-hGSkKmWuB2TGaYUxUrmlBTtEZwNc4csXZDPHXMCRbZ75r-9TVdUiQxS5lsIU-NJBtqv4zG9rvttu0WbltbVN5OEcn0dYQLnZ9jj4eH96Xz_nq7elleb_KPROiz3VZlKwYj0oiCq1w6WIZA6GMa-q9cKWP2jmtiYiKqpKNL0bnGBOc2rE4Nkc3k3edup8hQG-aCnyoa9uGbgBDlZZKKnoAyCUl-ABQcqH5P3g7gT51AClEs05VY9PWEGz-gjbSTEGP6PXOacHbOibb-gr2PJOjjqgRu5qwKoSw3-4cv3KBg8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27469402</pqid></control><display><type>article</type><title>Neural controllers for systems with unknown dynamics</title><source>IEEE Electronic Library (IEL)</source><creator>Porter, W.A. ; Wie Liu</creator><creatorcontrib>Porter, W.A. ; Wie Liu</creatorcontrib><description>This study presents a methodology for specifying a neural controller for a system about which no a priori model information is available. The neural design presumes that a finite duration input/output (I/O) histogram on the system is available. The design procedure extracts from the histogram sufficient information to specify the neural feedback controller. The resultant controller will drive the system along a general output reference profile (unknown during the design). The resultant controller also exhibits the capability of disturbance rejection and the capacity to stabilize unstable plants.&lt; &gt;</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.464354</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive control ; Applied sciences ; Artificial intelligence ; Artificial neural networks ; Computational modeling ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control system synthesis ; Control systems ; Exact sciences and technology ; Histograms ; Optical computing ; State-space methods ; Trajectory ; Very large scale integration</subject><ispartof>IEEE transactions on aerospace and electronic systems, 1995-10, Vol.31 (4), p.1331-1340</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-9d5d359257165980dbfdfe123492cc6bdcf9bb9916f828d3018fbb33642a364b3</citedby><cites>FETCH-LOGICAL-c366t-9d5d359257165980dbfdfe123492cc6bdcf9bb9916f828d3018fbb33642a364b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/464354$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/464354$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3702318$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Porter, W.A.</creatorcontrib><creatorcontrib>Wie Liu</creatorcontrib><title>Neural controllers for systems with unknown dynamics</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This study presents a methodology for specifying a neural controller for a system about which no a priori model information is available. The neural design presumes that a finite duration input/output (I/O) histogram on the system is available. The design procedure extracts from the histogram sufficient information to specify the neural feedback controller. The resultant controller will drive the system along a general output reference profile (unknown during the design). The resultant controller also exhibits the capability of disturbance rejection and the capacity to stabilize unstable plants.&lt; &gt;</description><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Exact sciences and technology</subject><subject>Histograms</subject><subject>Optical computing</subject><subject>State-space methods</subject><subject>Trajectory</subject><subject>Very large scale integration</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkMtLAzEQh4MoWKvg2dMeRLxszWvzOErxBUUveg5JNsHVfdTMLqX_vatbeu5lhmE-vhl-CF0SvCAE6zu54IKzgh-hGSkKmWuB2TGaYUxUrmlBTtEZwNc4csXZDPHXMCRbZ75r-9TVdUiQxS5lsIU-NJBtqv4zG9rvttu0WbltbVN5OEcn0dYQLnZ9jj4eH96Xz_nq7elleb_KPROiz3VZlKwYj0oiCq1w6WIZA6GMa-q9cKWP2jmtiYiKqpKNL0bnGBOc2rE4Nkc3k3edup8hQG-aCnyoa9uGbgBDlZZKKnoAyCUl-ABQcqH5P3g7gT51AClEs05VY9PWEGz-gjbSTEGP6PXOacHbOibb-gr2PJOjjqgRu5qwKoSw3-4cv3KBg8E</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Porter, W.A.</creator><creator>Wie Liu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19951001</creationdate><title>Neural controllers for systems with unknown dynamics</title><author>Porter, W.A. ; Wie Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-9d5d359257165980dbfdfe123492cc6bdcf9bb9916f828d3018fbb33642a364b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Exact sciences and technology</topic><topic>Histograms</topic><topic>Optical computing</topic><topic>State-space methods</topic><topic>Trajectory</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porter, W.A.</creatorcontrib><creatorcontrib>Wie Liu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Porter, W.A.</au><au>Wie Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural controllers for systems with unknown dynamics</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>1995-10-01</date><risdate>1995</risdate><volume>31</volume><issue>4</issue><spage>1331</spage><epage>1340</epage><pages>1331-1340</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This study presents a methodology for specifying a neural controller for a system about which no a priori model information is available. The neural design presumes that a finite duration input/output (I/O) histogram on the system is available. The design procedure extracts from the histogram sufficient information to specify the neural feedback controller. The resultant controller will drive the system along a general output reference profile (unknown during the design). The resultant controller also exhibits the capability of disturbance rejection and the capacity to stabilize unstable plants.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/7.464354</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 1995-10, Vol.31 (4), p.1331-1340
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_miscellaneous_28472102
source IEEE Electronic Library (IEL)
subjects Adaptive control
Applied sciences
Artificial intelligence
Artificial neural networks
Computational modeling
Computer science
control theory
systems
Connectionism. Neural networks
Control system synthesis
Control systems
Exact sciences and technology
Histograms
Optical computing
State-space methods
Trajectory
Very large scale integration
title Neural controllers for systems with unknown dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20controllers%20for%20systems%20with%20unknown%20dynamics&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Porter,%20W.A.&rft.date=1995-10-01&rft.volume=31&rft.issue=4&rft.spage=1331&rft.epage=1340&rft.pages=1331-1340&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.464354&rft_dat=%3Cproquest_RIE%3E28472102%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27469402&rft_id=info:pmid/&rft_ieee_id=464354&rfr_iscdi=true