Unresolved Rayleigh target detection using monopulse measurements

When the returns from two or more targets interfere (i.e., the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA) estimate indicated by the monopulse ratio can wander far beyond the angular separation of the targets. Generalized max...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 1998-04, Vol.34 (2), p.543-552
Hauptverfasser: Blair, W.D., Brandt-Pearce, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 552
container_issue 2
container_start_page 543
container_title IEEE transactions on aerospace and electronic systems
container_volume 34
creator Blair, W.D.
Brandt-Pearce, M.
description When the returns from two or more targets interfere (i.e., the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA) estimate indicated by the monopulse ratio can wander far beyond the angular separation of the targets. Generalized maximum likelihood (GML) detection of the presence of unresolved Rayleigh targets is developed with probability density functions (pdfs) conditioned on the measured amplitude of the target echoes. The Neyman-Pearson detection algorithm uses both the in-phase and quadrature portions of the monopulse ratio and requires no a priori knowledge of the signal-to-noise ratio (SNR) or DOA of either target. Receiver operating characteristic (ROC) curves are given along with simulation results that illustrate the performance and application of the algorithm.
doi_str_mv 10.1109/7.670335
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28469284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>670335</ieee_id><sourcerecordid>28469284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-af72a17dab9bbed757cdcfdbfda2c6ab509b365f73e8147561428f1fc6b1cde43</originalsourceid><addsrcrecordid>eNqN0EtLw0AQB_BFFKxV8OwpJ_GSupvNvo6l-IKCIPYc9jFbI0m27iZCv70pKV71MsPM_PgfBqFrgheEYHUvFlxgStkJmhHGRK44pqdohjGRuSoYOUcXKX2OYylLOkPLTRchheYbXPam9w3U24-s13ELfeagB9vXocuGVHfbrA1d2A1NgqwFnYYILXR9ukRnXo_Lq2Ofo83jw_vqOV-_Pr2sluvcUir6XHtRaCKcNsoYcIIJ66x3xjtdWK4Nw8pQzrygIEkpGCdlIT3xlhtiHZR0jm6n3F0MXwOkvmrrZKFpdAdhSFUhlZQK83_Akqux_A05l6RQh8S7CdoYUorgq12sWx33FcHV4euVqKavj_RmojUA_LLj8Qd1v34c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26681296</pqid></control><display><type>article</type><title>Unresolved Rayleigh target detection using monopulse measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Blair, W.D. ; Brandt-Pearce, M.</creator><creatorcontrib>Blair, W.D. ; Brandt-Pearce, M.</creatorcontrib><description>When the returns from two or more targets interfere (i.e., the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA) estimate indicated by the monopulse ratio can wander far beyond the angular separation of the targets. Generalized maximum likelihood (GML) detection of the presence of unresolved Rayleigh targets is developed with probability density functions (pdfs) conditioned on the measured amplitude of the target echoes. The Neyman-Pearson detection algorithm uses both the in-phase and quadrature portions of the monopulse ratio and requires no a priori knowledge of the signal-to-noise ratio (SNR) or DOA of either target. Receiver operating characteristic (ROC) curves are given along with simulation results that illustrate the performance and application of the algorithm.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.670335</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Density measurement ; Detection algorithms ; Direction of arrival estimation ; Frequency estimation ; Maximum likelihood detection ; Maximum likelihood estimation ; Object detection ; Probability density function ; Radar detection ; Signal resolution</subject><ispartof>IEEE transactions on aerospace and electronic systems, 1998-04, Vol.34 (2), p.543-552</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-af72a17dab9bbed757cdcfdbfda2c6ab509b365f73e8147561428f1fc6b1cde43</citedby><cites>FETCH-LOGICAL-c337t-af72a17dab9bbed757cdcfdbfda2c6ab509b365f73e8147561428f1fc6b1cde43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/670335$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/670335$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blair, W.D.</creatorcontrib><creatorcontrib>Brandt-Pearce, M.</creatorcontrib><title>Unresolved Rayleigh target detection using monopulse measurements</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>When the returns from two or more targets interfere (i.e., the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA) estimate indicated by the monopulse ratio can wander far beyond the angular separation of the targets. Generalized maximum likelihood (GML) detection of the presence of unresolved Rayleigh targets is developed with probability density functions (pdfs) conditioned on the measured amplitude of the target echoes. The Neyman-Pearson detection algorithm uses both the in-phase and quadrature portions of the monopulse ratio and requires no a priori knowledge of the signal-to-noise ratio (SNR) or DOA of either target. Receiver operating characteristic (ROC) curves are given along with simulation results that illustrate the performance and application of the algorithm.</description><subject>Density measurement</subject><subject>Detection algorithms</subject><subject>Direction of arrival estimation</subject><subject>Frequency estimation</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>Object detection</subject><subject>Probability density function</subject><subject>Radar detection</subject><subject>Signal resolution</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0EtLw0AQB_BFFKxV8OwpJ_GSupvNvo6l-IKCIPYc9jFbI0m27iZCv70pKV71MsPM_PgfBqFrgheEYHUvFlxgStkJmhHGRK44pqdohjGRuSoYOUcXKX2OYylLOkPLTRchheYbXPam9w3U24-s13ELfeagB9vXocuGVHfbrA1d2A1NgqwFnYYILXR9ukRnXo_Lq2Ofo83jw_vqOV-_Pr2sluvcUir6XHtRaCKcNsoYcIIJ66x3xjtdWK4Nw8pQzrygIEkpGCdlIT3xlhtiHZR0jm6n3F0MXwOkvmrrZKFpdAdhSFUhlZQK83_Akqux_A05l6RQh8S7CdoYUorgq12sWx33FcHV4euVqKavj_RmojUA_LLj8Qd1v34c</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Blair, W.D.</creator><creator>Brandt-Pearce, M.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19980401</creationdate><title>Unresolved Rayleigh target detection using monopulse measurements</title><author>Blair, W.D. ; Brandt-Pearce, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-af72a17dab9bbed757cdcfdbfda2c6ab509b365f73e8147561428f1fc6b1cde43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Density measurement</topic><topic>Detection algorithms</topic><topic>Direction of arrival estimation</topic><topic>Frequency estimation</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>Object detection</topic><topic>Probability density function</topic><topic>Radar detection</topic><topic>Signal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blair, W.D.</creatorcontrib><creatorcontrib>Brandt-Pearce, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blair, W.D.</au><au>Brandt-Pearce, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unresolved Rayleigh target detection using monopulse measurements</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>1998-04-01</date><risdate>1998</risdate><volume>34</volume><issue>2</issue><spage>543</spage><epage>552</epage><pages>543-552</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>When the returns from two or more targets interfere (i.e., the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA) estimate indicated by the monopulse ratio can wander far beyond the angular separation of the targets. Generalized maximum likelihood (GML) detection of the presence of unresolved Rayleigh targets is developed with probability density functions (pdfs) conditioned on the measured amplitude of the target echoes. The Neyman-Pearson detection algorithm uses both the in-phase and quadrature portions of the monopulse ratio and requires no a priori knowledge of the signal-to-noise ratio (SNR) or DOA of either target. Receiver operating characteristic (ROC) curves are given along with simulation results that illustrate the performance and application of the algorithm.</abstract><pub>IEEE</pub><doi>10.1109/7.670335</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 1998-04, Vol.34 (2), p.543-552
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_miscellaneous_28469284
source IEEE Electronic Library (IEL)
subjects Density measurement
Detection algorithms
Direction of arrival estimation
Frequency estimation
Maximum likelihood detection
Maximum likelihood estimation
Object detection
Probability density function
Radar detection
Signal resolution
title Unresolved Rayleigh target detection using monopulse measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unresolved%20Rayleigh%20target%20detection%20using%20monopulse%20measurements&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Blair,%20W.D.&rft.date=1998-04-01&rft.volume=34&rft.issue=2&rft.spage=543&rft.epage=552&rft.pages=543-552&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.670335&rft_dat=%3Cproquest_RIE%3E28469284%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26681296&rft_id=info:pmid/&rft_ieee_id=670335&rfr_iscdi=true