Engineering Entropy-Driven Nanomachine-Mediated Morphological Evolution of Anisotropic Silver Triangular Nanoplates for Colorimetric and Photothermal Biosensing

A DNA/RNA biosensor capable of single nucleotide variation (SNV) resolution is highly desirable for drug design and disease diagnosis. To meet the point-of-care demand, rapid, cost-effective, and accurate SNV detection is of great significance but still suffers from a challenge. In this work, a uniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-08, Vol.95 (32), p.12032-12038
Hauptverfasser: Li, Jing, Zhang, Yansong, Wang, Xin, Zhang, Shenlong, Tan, Qingqing, Hu, Bingtao, Xu, Qin, Li, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12038
container_issue 32
container_start_page 12032
container_title Analytical chemistry (Washington)
container_volume 95
creator Li, Jing
Zhang, Yansong
Wang, Xin
Zhang, Shenlong
Tan, Qingqing
Hu, Bingtao
Xu, Qin
Li, Hongbo
description A DNA/RNA biosensor capable of single nucleotide variation (SNV) resolution is highly desirable for drug design and disease diagnosis. To meet the point-of-care demand, rapid, cost-effective, and accurate SNV detection is of great significance but still suffers from a challenge. In this work, a unique nonenzymatic dual-modal (multicolorimetric and photothermal) visualization DNA biosensor is first proposed for SNV identification on the basis of an entropy-driven nanomachine with double output DNAs and coordination etching of anisotropic silver triangular nanoplates (Ag TNPs). When the target initiates the DNA nanomachine, the liberated multiple output DNAs can be utilized as a bridge to produce a superparamagnetic sandwich complex. The incoming poly-C DNA can coordinate and etch highly active Ag+ ions at the tips of Ag TNPs, causing a shift in the plasmon peak of Ag TNPs from 808 to 613 nm. The more target DNAs are introduced, the more output DNAs are released and thus the more Ag+ ions are etched. The noticeable color changes of anisotropic Ag TNPs can be differentiated by “naked eye” and accurate temperature reading. The programmable DNA nanotechnology and magnetic extraction grant the high specificity. Also, the SNV detection results can be self-verified by the two-signal readouts. Moreover, the dual-modal biosensor has the advantages of portability, cost-effectiveness, and simplicity. Particularly, the exclusive entropy-driven amplifier liberates double output DNAs to bridge more poly-C DNAs, enabling the dual-modal visualization DNA biosensor with improved sensitivity.
doi_str_mv 10.1021/acs.analchem.3c01888
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2846928058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846928058</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-3c3b59bb4887e9301bb1e24e69c8d0e5c024a2686915c87fcfb81df6d5d4e4cb3</originalsourceid><addsrcrecordid>eNp9kUFu1DAUQC0EokPLDRCyxIZNBtuxE2dZpkOp1AJSyzpynJ-JK8cOdjJSb8NRcTrTLrpg5YXff_bXQ-gDJWtKGP2idFwrp6zuYVjnmlAp5Su0ooKRrJCSvUYrQkiesZKQE_QuxntCKCW0eItO8lJwxgVfob9btzMOIBi3w1s3BT8-ZBfB7MHhH8r5Qek-3Wc30Bo1QYtvfBh7b_3OaGXxdu_tPBnvsO_wuTPRLwaj8a2xewj4LhjldrNV4dE22uSIuPMBb5IjmAGmkGjlWvyr95OfeghD8n41PoKL6VNn6E2nbIT3x_MU_f62vdt8z65_Xl5tzq8zlZfFlOU6b0TVNFzKEqqc0KahwDgUlZYtAaEJ44oVsqio0LLsdNdI2nZFK1oOXDf5Kfp88I7B_5khTvVgogZrlQM_x5pJXlRMEiET-ukFeu_nkFIslKCsLARdKH6gdPAxBujqMe2rwkNNSb0UrFPB-qlgfSyYxj4e5XMzQPs89JQsAeQALOPPD__X-Q9qv68F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851276518</pqid></control><display><type>article</type><title>Engineering Entropy-Driven Nanomachine-Mediated Morphological Evolution of Anisotropic Silver Triangular Nanoplates for Colorimetric and Photothermal Biosensing</title><source>American Chemical Society Journals</source><creator>Li, Jing ; Zhang, Yansong ; Wang, Xin ; Zhang, Shenlong ; Tan, Qingqing ; Hu, Bingtao ; Xu, Qin ; Li, Hongbo</creator><creatorcontrib>Li, Jing ; Zhang, Yansong ; Wang, Xin ; Zhang, Shenlong ; Tan, Qingqing ; Hu, Bingtao ; Xu, Qin ; Li, Hongbo</creatorcontrib><description>A DNA/RNA biosensor capable of single nucleotide variation (SNV) resolution is highly desirable for drug design and disease diagnosis. To meet the point-of-care demand, rapid, cost-effective, and accurate SNV detection is of great significance but still suffers from a challenge. In this work, a unique nonenzymatic dual-modal (multicolorimetric and photothermal) visualization DNA biosensor is first proposed for SNV identification on the basis of an entropy-driven nanomachine with double output DNAs and coordination etching of anisotropic silver triangular nanoplates (Ag TNPs). When the target initiates the DNA nanomachine, the liberated multiple output DNAs can be utilized as a bridge to produce a superparamagnetic sandwich complex. The incoming poly-C DNA can coordinate and etch highly active Ag+ ions at the tips of Ag TNPs, causing a shift in the plasmon peak of Ag TNPs from 808 to 613 nm. The more target DNAs are introduced, the more output DNAs are released and thus the more Ag+ ions are etched. The noticeable color changes of anisotropic Ag TNPs can be differentiated by “naked eye” and accurate temperature reading. The programmable DNA nanotechnology and magnetic extraction grant the high specificity. Also, the SNV detection results can be self-verified by the two-signal readouts. Moreover, the dual-modal biosensor has the advantages of portability, cost-effectiveness, and simplicity. Particularly, the exclusive entropy-driven amplifier liberates double output DNAs to bridge more poly-C DNAs, enabling the dual-modal visualization DNA biosensor with improved sensitivity.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c01888</identifier><identifier>PMID: 37542454</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anisotropy ; Biosensors ; Chemistry ; Colorimetry ; Deoxyribonucleic acid ; DNA ; Drug development ; Entropy ; Etching ; Ions ; Nanotechnology ; Nucleotides ; Silver ; Visualization</subject><ispartof>Analytical chemistry (Washington), 2023-08, Vol.95 (32), p.12032-12038</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 15, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-3c3b59bb4887e9301bb1e24e69c8d0e5c024a2686915c87fcfb81df6d5d4e4cb3</citedby><cites>FETCH-LOGICAL-a376t-3c3b59bb4887e9301bb1e24e69c8d0e5c024a2686915c87fcfb81df6d5d4e4cb3</cites><orcidid>0000-0001-8662-0427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c01888$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c01888$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37542454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Zhang, Yansong</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zhang, Shenlong</creatorcontrib><creatorcontrib>Tan, Qingqing</creatorcontrib><creatorcontrib>Hu, Bingtao</creatorcontrib><creatorcontrib>Xu, Qin</creatorcontrib><creatorcontrib>Li, Hongbo</creatorcontrib><title>Engineering Entropy-Driven Nanomachine-Mediated Morphological Evolution of Anisotropic Silver Triangular Nanoplates for Colorimetric and Photothermal Biosensing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A DNA/RNA biosensor capable of single nucleotide variation (SNV) resolution is highly desirable for drug design and disease diagnosis. To meet the point-of-care demand, rapid, cost-effective, and accurate SNV detection is of great significance but still suffers from a challenge. In this work, a unique nonenzymatic dual-modal (multicolorimetric and photothermal) visualization DNA biosensor is first proposed for SNV identification on the basis of an entropy-driven nanomachine with double output DNAs and coordination etching of anisotropic silver triangular nanoplates (Ag TNPs). When the target initiates the DNA nanomachine, the liberated multiple output DNAs can be utilized as a bridge to produce a superparamagnetic sandwich complex. The incoming poly-C DNA can coordinate and etch highly active Ag+ ions at the tips of Ag TNPs, causing a shift in the plasmon peak of Ag TNPs from 808 to 613 nm. The more target DNAs are introduced, the more output DNAs are released and thus the more Ag+ ions are etched. The noticeable color changes of anisotropic Ag TNPs can be differentiated by “naked eye” and accurate temperature reading. The programmable DNA nanotechnology and magnetic extraction grant the high specificity. Also, the SNV detection results can be self-verified by the two-signal readouts. Moreover, the dual-modal biosensor has the advantages of portability, cost-effectiveness, and simplicity. Particularly, the exclusive entropy-driven amplifier liberates double output DNAs to bridge more poly-C DNAs, enabling the dual-modal visualization DNA biosensor with improved sensitivity.</description><subject>Anisotropy</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Colorimetry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug development</subject><subject>Entropy</subject><subject>Etching</subject><subject>Ions</subject><subject>Nanotechnology</subject><subject>Nucleotides</subject><subject>Silver</subject><subject>Visualization</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUFu1DAUQC0EokPLDRCyxIZNBtuxE2dZpkOp1AJSyzpynJ-JK8cOdjJSb8NRcTrTLrpg5YXff_bXQ-gDJWtKGP2idFwrp6zuYVjnmlAp5Su0ooKRrJCSvUYrQkiesZKQE_QuxntCKCW0eItO8lJwxgVfob9btzMOIBi3w1s3BT8-ZBfB7MHhH8r5Qek-3Wc30Bo1QYtvfBh7b_3OaGXxdu_tPBnvsO_wuTPRLwaj8a2xewj4LhjldrNV4dE22uSIuPMBb5IjmAGmkGjlWvyr95OfeghD8n41PoKL6VNn6E2nbIT3x_MU_f62vdt8z65_Xl5tzq8zlZfFlOU6b0TVNFzKEqqc0KahwDgUlZYtAaEJ44oVsqio0LLsdNdI2nZFK1oOXDf5Kfp88I7B_5khTvVgogZrlQM_x5pJXlRMEiET-ukFeu_nkFIslKCsLARdKH6gdPAxBujqMe2rwkNNSb0UrFPB-qlgfSyYxj4e5XMzQPs89JQsAeQALOPPD__X-Q9qv68F</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Li, Jing</creator><creator>Zhang, Yansong</creator><creator>Wang, Xin</creator><creator>Zhang, Shenlong</creator><creator>Tan, Qingqing</creator><creator>Hu, Bingtao</creator><creator>Xu, Qin</creator><creator>Li, Hongbo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8662-0427</orcidid></search><sort><creationdate>20230815</creationdate><title>Engineering Entropy-Driven Nanomachine-Mediated Morphological Evolution of Anisotropic Silver Triangular Nanoplates for Colorimetric and Photothermal Biosensing</title><author>Li, Jing ; Zhang, Yansong ; Wang, Xin ; Zhang, Shenlong ; Tan, Qingqing ; Hu, Bingtao ; Xu, Qin ; Li, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-3c3b59bb4887e9301bb1e24e69c8d0e5c024a2686915c87fcfb81df6d5d4e4cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Colorimetry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug development</topic><topic>Entropy</topic><topic>Etching</topic><topic>Ions</topic><topic>Nanotechnology</topic><topic>Nucleotides</topic><topic>Silver</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Zhang, Yansong</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zhang, Shenlong</creatorcontrib><creatorcontrib>Tan, Qingqing</creatorcontrib><creatorcontrib>Hu, Bingtao</creatorcontrib><creatorcontrib>Xu, Qin</creatorcontrib><creatorcontrib>Li, Hongbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing</au><au>Zhang, Yansong</au><au>Wang, Xin</au><au>Zhang, Shenlong</au><au>Tan, Qingqing</au><au>Hu, Bingtao</au><au>Xu, Qin</au><au>Li, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Entropy-Driven Nanomachine-Mediated Morphological Evolution of Anisotropic Silver Triangular Nanoplates for Colorimetric and Photothermal Biosensing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-08-15</date><risdate>2023</risdate><volume>95</volume><issue>32</issue><spage>12032</spage><epage>12038</epage><pages>12032-12038</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>A DNA/RNA biosensor capable of single nucleotide variation (SNV) resolution is highly desirable for drug design and disease diagnosis. To meet the point-of-care demand, rapid, cost-effective, and accurate SNV detection is of great significance but still suffers from a challenge. In this work, a unique nonenzymatic dual-modal (multicolorimetric and photothermal) visualization DNA biosensor is first proposed for SNV identification on the basis of an entropy-driven nanomachine with double output DNAs and coordination etching of anisotropic silver triangular nanoplates (Ag TNPs). When the target initiates the DNA nanomachine, the liberated multiple output DNAs can be utilized as a bridge to produce a superparamagnetic sandwich complex. The incoming poly-C DNA can coordinate and etch highly active Ag+ ions at the tips of Ag TNPs, causing a shift in the plasmon peak of Ag TNPs from 808 to 613 nm. The more target DNAs are introduced, the more output DNAs are released and thus the more Ag+ ions are etched. The noticeable color changes of anisotropic Ag TNPs can be differentiated by “naked eye” and accurate temperature reading. The programmable DNA nanotechnology and magnetic extraction grant the high specificity. Also, the SNV detection results can be self-verified by the two-signal readouts. Moreover, the dual-modal biosensor has the advantages of portability, cost-effectiveness, and simplicity. Particularly, the exclusive entropy-driven amplifier liberates double output DNAs to bridge more poly-C DNAs, enabling the dual-modal visualization DNA biosensor with improved sensitivity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37542454</pmid><doi>10.1021/acs.analchem.3c01888</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8662-0427</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-08, Vol.95 (32), p.12032-12038
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2846928058
source American Chemical Society Journals
subjects Anisotropy
Biosensors
Chemistry
Colorimetry
Deoxyribonucleic acid
DNA
Drug development
Entropy
Etching
Ions
Nanotechnology
Nucleotides
Silver
Visualization
title Engineering Entropy-Driven Nanomachine-Mediated Morphological Evolution of Anisotropic Silver Triangular Nanoplates for Colorimetric and Photothermal Biosensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Entropy-Driven%20Nanomachine-Mediated%20Morphological%20Evolution%20of%20Anisotropic%20Silver%20Triangular%20Nanoplates%20for%20Colorimetric%20and%20Photothermal%20Biosensing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Li,%20Jing&rft.date=2023-08-15&rft.volume=95&rft.issue=32&rft.spage=12032&rft.epage=12038&rft.pages=12032-12038&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c01888&rft_dat=%3Cproquest_cross%3E2846928058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851276518&rft_id=info:pmid/37542454&rfr_iscdi=true