An optimal approach for random signals classification
A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision ru...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1991-11, Vol.13 (11), p.1192-1196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1196 |
---|---|
container_issue | 11 |
container_start_page | 1192 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 13 |
creator | Doncarli, C. Le Carpentier, E. |
description | A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision rules including the variances of the estimations. The results obtained on a large set of simulated data show that this approach is superior to the best classical methods (cepstral distance or Kullback divergence), particularly in the common case where the hypothesis of those methods is not verified (short samples. small training sets. random classes).< > |
doi_str_mv | 10.1109/34.103278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28467172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>103278</ieee_id><sourcerecordid>28467172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-9f1e19539bae505046bab09929c2a400c3870230cc667ee620fc379087dbe1e63</originalsourceid><addsrcrecordid>eNqFkD1LBDEQhoMoeJ4WtlZbiGCx5-Q7KQ_xCw5stA7ZXKKRvd012Sv89-bcQ-ysBoZnHt55ETrHsMAY9A1lCwyUSHWAZlhTXVNO9SGaARakVoqoY3SS8wcAZhzoDPFlV_XDGDe2rewwpN669yr0qUq2W_ebKse3zra5cq3NOYbo7Bj77hQdhbL1Z_s5R6_3dy-3j_Xq-eHpdrmqHdFyrHXAHusSoLGeAwcmGtuA1kQ7YhmAo0oCoeCcENJ7QSA4KjUouW489oLO0dXkLcE-tz6PZhOz821rO99vsyGKCYkl-R_klDDBduD1BLrU55x8MEMqz6cvg8HsGjSUmanBwl7upTY724ZSiYv594AxxQXXBbuYsOi9_6P7cXwDLrV2Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25324642</pqid></control><display><type>article</type><title>An optimal approach for random signals classification</title><source>IEEE Electronic Library (IEL)</source><creator>Doncarli, C. ; Le Carpentier, E.</creator><creatorcontrib>Doncarli, C. ; Le Carpentier, E.</creatorcontrib><description>A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision rules including the variances of the estimations. The results obtained on a large set of simulated data show that this approach is superior to the best classical methods (cepstral distance or Kullback divergence), particularly in the common case where the hypothesis of those methods is not verified (short samples. small training sets. random classes).< ></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.103278</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Graphics ; Image analysis ; Image edge detection ; Image processing ; Ligaments ; Pattern analysis ; Pattern classification ; Remote sensing ; Very large scale integration</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1991-11, Vol.13 (11), p.1192-1196</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-9f1e19539bae505046bab09929c2a400c3870230cc667ee620fc379087dbe1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/103278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/103278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4485659$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Doncarli, C.</creatorcontrib><creatorcontrib>Le Carpentier, E.</creatorcontrib><title>An optimal approach for random signals classification</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision rules including the variances of the estimations. The results obtained on a large set of simulated data show that this approach is superior to the best classical methods (cepstral distance or Kullback divergence), particularly in the common case where the hypothesis of those methods is not verified (short samples. small training sets. random classes).< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graphics</subject><subject>Image analysis</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Ligaments</subject><subject>Pattern analysis</subject><subject>Pattern classification</subject><subject>Remote sensing</subject><subject>Very large scale integration</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqFkD1LBDEQhoMoeJ4WtlZbiGCx5-Q7KQ_xCw5stA7ZXKKRvd012Sv89-bcQ-ysBoZnHt55ETrHsMAY9A1lCwyUSHWAZlhTXVNO9SGaARakVoqoY3SS8wcAZhzoDPFlV_XDGDe2rewwpN669yr0qUq2W_ebKse3zra5cq3NOYbo7Bj77hQdhbL1Z_s5R6_3dy-3j_Xq-eHpdrmqHdFyrHXAHusSoLGeAwcmGtuA1kQ7YhmAo0oCoeCcENJ7QSA4KjUouW489oLO0dXkLcE-tz6PZhOz821rO99vsyGKCYkl-R_klDDBduD1BLrU55x8MEMqz6cvg8HsGjSUmanBwl7upTY724ZSiYv594AxxQXXBbuYsOi9_6P7cXwDLrV2Mg</recordid><startdate>19911101</startdate><enddate>19911101</enddate><creator>Doncarli, C.</creator><creator>Le Carpentier, E.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19911101</creationdate><title>An optimal approach for random signals classification</title><author>Doncarli, C. ; Le Carpentier, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-9f1e19539bae505046bab09929c2a400c3870230cc667ee620fc379087dbe1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graphics</topic><topic>Image analysis</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Ligaments</topic><topic>Pattern analysis</topic><topic>Pattern classification</topic><topic>Remote sensing</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doncarli, C.</creatorcontrib><creatorcontrib>Le Carpentier, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doncarli, C.</au><au>Le Carpentier, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal approach for random signals classification</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1991-11-01</date><risdate>1991</risdate><volume>13</volume><issue>11</issue><spage>1192</spage><epage>1196</epage><pages>1192-1196</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision rules including the variances of the estimations. The results obtained on a large set of simulated data show that this approach is superior to the best classical methods (cepstral distance or Kullback divergence), particularly in the common case where the hypothesis of those methods is not verified (short samples. small training sets. random classes).< ></abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.103278</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1991-11, Vol.13 (11), p.1192-1196 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_28467172 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Graphics Image analysis Image edge detection Image processing Ligaments Pattern analysis Pattern classification Remote sensing Very large scale integration |
title | An optimal approach for random signals classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20approach%20for%20random%20signals%20classification&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Doncarli,%20C.&rft.date=1991-11-01&rft.volume=13&rft.issue=11&rft.spage=1192&rft.epage=1196&rft.pages=1192-1196&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.103278&rft_dat=%3Cproquest_RIE%3E28467172%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25324642&rft_id=info:pmid/&rft_ieee_id=103278&rfr_iscdi=true |