An optimal approach for random signals classification

A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision ru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1991-11, Vol.13 (11), p.1192-1196
Hauptverfasser: Doncarli, C., Le Carpentier, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1196
container_issue 11
container_start_page 1192
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 13
creator Doncarli, C.
Le Carpentier, E.
description A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision rules including the variances of the estimations. The results obtained on a large set of simulated data show that this approach is superior to the best classical methods (cepstral distance or Kullback divergence), particularly in the common case where the hypothesis of those methods is not verified (short samples. small training sets. random classes).< >
doi_str_mv 10.1109/34.103278
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28467172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>103278</ieee_id><sourcerecordid>28467172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-9f1e19539bae505046bab09929c2a400c3870230cc667ee620fc379087dbe1e63</originalsourceid><addsrcrecordid>eNqFkD1LBDEQhoMoeJ4WtlZbiGCx5-Q7KQ_xCw5stA7ZXKKRvd012Sv89-bcQ-ysBoZnHt55ETrHsMAY9A1lCwyUSHWAZlhTXVNO9SGaARakVoqoY3SS8wcAZhzoDPFlV_XDGDe2rewwpN669yr0qUq2W_ebKse3zra5cq3NOYbo7Bj77hQdhbL1Z_s5R6_3dy-3j_Xq-eHpdrmqHdFyrHXAHusSoLGeAwcmGtuA1kQ7YhmAo0oCoeCcENJ7QSA4KjUouW489oLO0dXkLcE-tz6PZhOz821rO99vsyGKCYkl-R_klDDBduD1BLrU55x8MEMqz6cvg8HsGjSUmanBwl7upTY724ZSiYv594AxxQXXBbuYsOi9_6P7cXwDLrV2Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25324642</pqid></control><display><type>article</type><title>An optimal approach for random signals classification</title><source>IEEE Electronic Library (IEL)</source><creator>Doncarli, C. ; Le Carpentier, E.</creator><creatorcontrib>Doncarli, C. ; Le Carpentier, E.</creatorcontrib><description>A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision rules including the variances of the estimations. The results obtained on a large set of simulated data show that this approach is superior to the best classical methods (cepstral distance or Kullback divergence), particularly in the common case where the hypothesis of those methods is not verified (short samples. small training sets. random classes).&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.103278</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Graphics ; Image analysis ; Image edge detection ; Image processing ; Ligaments ; Pattern analysis ; Pattern classification ; Remote sensing ; Very large scale integration</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1991-11, Vol.13 (11), p.1192-1196</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-9f1e19539bae505046bab09929c2a400c3870230cc667ee620fc379087dbe1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/103278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/103278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4485659$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Doncarli, C.</creatorcontrib><creatorcontrib>Le Carpentier, E.</creatorcontrib><title>An optimal approach for random signals classification</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision rules including the variances of the estimations. The results obtained on a large set of simulated data show that this approach is superior to the best classical methods (cepstral distance or Kullback divergence), particularly in the common case where the hypothesis of those methods is not verified (short samples. small training sets. random classes).&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graphics</subject><subject>Image analysis</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Ligaments</subject><subject>Pattern analysis</subject><subject>Pattern classification</subject><subject>Remote sensing</subject><subject>Very large scale integration</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNqFkD1LBDEQhoMoeJ4WtlZbiGCx5-Q7KQ_xCw5stA7ZXKKRvd012Sv89-bcQ-ysBoZnHt55ETrHsMAY9A1lCwyUSHWAZlhTXVNO9SGaARakVoqoY3SS8wcAZhzoDPFlV_XDGDe2rewwpN669yr0qUq2W_ebKse3zra5cq3NOYbo7Bj77hQdhbL1Z_s5R6_3dy-3j_Xq-eHpdrmqHdFyrHXAHusSoLGeAwcmGtuA1kQ7YhmAo0oCoeCcENJ7QSA4KjUouW489oLO0dXkLcE-tz6PZhOz821rO99vsyGKCYkl-R_klDDBduD1BLrU55x8MEMqz6cvg8HsGjSUmanBwl7upTY724ZSiYv594AxxQXXBbuYsOi9_6P7cXwDLrV2Mg</recordid><startdate>19911101</startdate><enddate>19911101</enddate><creator>Doncarli, C.</creator><creator>Le Carpentier, E.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19911101</creationdate><title>An optimal approach for random signals classification</title><author>Doncarli, C. ; Le Carpentier, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-9f1e19539bae505046bab09929c2a400c3870230cc667ee620fc379087dbe1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graphics</topic><topic>Image analysis</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Ligaments</topic><topic>Pattern analysis</topic><topic>Pattern classification</topic><topic>Remote sensing</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doncarli, C.</creatorcontrib><creatorcontrib>Le Carpentier, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doncarli, C.</au><au>Le Carpentier, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal approach for random signals classification</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1991-11-01</date><risdate>1991</risdate><volume>13</volume><issue>11</issue><spage>1192</spage><epage>1196</epage><pages>1192-1196</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A method is proposed which solves the problem of the Bayes classification of ARMA (autoregressive moving average) signals when the models of classes and samples are not exactly known but only estimated from finite-length data sequences. Justified approximations and the hypothesis lead to decision rules including the variances of the estimations. The results obtained on a large set of simulated data show that this approach is superior to the best classical methods (cepstral distance or Kullback divergence), particularly in the common case where the hypothesis of those methods is not verified (short samples. small training sets. random classes).&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.103278</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1991-11, Vol.13 (11), p.1192-1196
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_28467172
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Graphics
Image analysis
Image edge detection
Image processing
Ligaments
Pattern analysis
Pattern classification
Remote sensing
Very large scale integration
title An optimal approach for random signals classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T16%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20approach%20for%20random%20signals%20classification&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Doncarli,%20C.&rft.date=1991-11-01&rft.volume=13&rft.issue=11&rft.spage=1192&rft.epage=1196&rft.pages=1192-1196&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.103278&rft_dat=%3Cproquest_RIE%3E28467172%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25324642&rft_id=info:pmid/&rft_ieee_id=103278&rfr_iscdi=true