On the collapse arresting effects of discreteness

We examine the effects of discreteness on a prototypical example of a collapse exhibiting partial differential equation (PDE). As our benchmark example, we select the discrete nonlinear Schrödinger (DNLS) equation. We provide a number of physical settings where issues of the interplay of collapse an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and computers in simulation 2005-08, Vol.69 (5), p.553-566
Hauptverfasser: Tzirakis, N., Kevrekidis, P.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 5
container_start_page 553
container_title Mathematics and computers in simulation
container_volume 69
creator Tzirakis, N.
Kevrekidis, P.G.
description We examine the effects of discreteness on a prototypical example of a collapse exhibiting partial differential equation (PDE). As our benchmark example, we select the discrete nonlinear Schrödinger (DNLS) equation. We provide a number of physical settings where issues of the interplay of collapse and discreteness may arise and focus on the quintic, one-dimensional DNLS. We justify that collapse in the sense of continuum limit (i.e., of the L ∞ norm becoming infinite) cannot occur in the discrete setting. We support our qualitative arguments both with numerical simulations as well as with an analysis of a quasi-continuum, pseudo-differential approximation to the discrete model. Global well-posedness is proved for the latter problem in H s , for s > 1 / 2 . While the collapse arresting nature of discreteness can be immediately realized, our estimates elucidate the “approach” towards the collapse-bearing continuum limit and the mechanism through which focusing arises in the latter.
doi_str_mv 10.1016/j.matcom.2005.03.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28465834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378475405000984</els_id><sourcerecordid>28060111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b686d6126d02d66bc3ee43bf0917b6324f1c8079edb3b94481574d8e192905973</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEqXwBhxy4pawGzu2c0FCFX9SpV7gbCX2BlI1cbFTJN4eV-GMOO0cZkazH2PXCAUCytttMTST9UNRAlQF8AKQn7AFalXmCqU8ZQvgSudCVeKcXcS4BYCkqwXDzZhNH5RZv9s1-0hZEwLFqR_fM-o6slPMfJe5PtpAE40U4yU765pdpKvfu2Rvjw-vq-d8vXl6Wd2vc8ulnvJWaukkltJB6aRsLScSvO2gRtVKXooOrQZVk2t5WwuhsVLCacK6rKGqFV-ym7l3H_znIW0yQ1pBaeZI_hBNqYWsNBf_MIIERExGMRtt8DEG6sw-9EMTvg2COYI0WzODNEeQBrhJIFPsbo5R-varp2Ci7Wm05PqQABnn-78LfgDA1XxC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28060111</pqid></control><display><type>article</type><title>On the collapse arresting effects of discreteness</title><source>ScienceDirect</source><creator>Tzirakis, N. ; Kevrekidis, P.G.</creator><creatorcontrib>Tzirakis, N. ; Kevrekidis, P.G.</creatorcontrib><description>We examine the effects of discreteness on a prototypical example of a collapse exhibiting partial differential equation (PDE). As our benchmark example, we select the discrete nonlinear Schrödinger (DNLS) equation. We provide a number of physical settings where issues of the interplay of collapse and discreteness may arise and focus on the quintic, one-dimensional DNLS. We justify that collapse in the sense of continuum limit (i.e., of the L ∞ norm becoming infinite) cannot occur in the discrete setting. We support our qualitative arguments both with numerical simulations as well as with an analysis of a quasi-continuum, pseudo-differential approximation to the discrete model. Global well-posedness is proved for the latter problem in H s , for s &gt; 1 / 2 . While the collapse arresting nature of discreteness can be immediately realized, our estimates elucidate the “approach” towards the collapse-bearing continuum limit and the mechanism through which focusing arises in the latter.</description><identifier>ISSN: 0378-4754</identifier><identifier>EISSN: 1872-7166</identifier><identifier>DOI: 10.1016/j.matcom.2005.03.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Collapse arrest ; Discreteness ; DNLS equation ; Well-posedness</subject><ispartof>Mathematics and computers in simulation, 2005-08, Vol.69 (5), p.553-566</ispartof><rights>2005 IMACS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b686d6126d02d66bc3ee43bf0917b6324f1c8079edb3b94481574d8e192905973</citedby><cites>FETCH-LOGICAL-c368t-b686d6126d02d66bc3ee43bf0917b6324f1c8079edb3b94481574d8e192905973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matcom.2005.03.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tzirakis, N.</creatorcontrib><creatorcontrib>Kevrekidis, P.G.</creatorcontrib><title>On the collapse arresting effects of discreteness</title><title>Mathematics and computers in simulation</title><description>We examine the effects of discreteness on a prototypical example of a collapse exhibiting partial differential equation (PDE). As our benchmark example, we select the discrete nonlinear Schrödinger (DNLS) equation. We provide a number of physical settings where issues of the interplay of collapse and discreteness may arise and focus on the quintic, one-dimensional DNLS. We justify that collapse in the sense of continuum limit (i.e., of the L ∞ norm becoming infinite) cannot occur in the discrete setting. We support our qualitative arguments both with numerical simulations as well as with an analysis of a quasi-continuum, pseudo-differential approximation to the discrete model. Global well-posedness is proved for the latter problem in H s , for s &gt; 1 / 2 . While the collapse arresting nature of discreteness can be immediately realized, our estimates elucidate the “approach” towards the collapse-bearing continuum limit and the mechanism through which focusing arises in the latter.</description><subject>Collapse arrest</subject><subject>Discreteness</subject><subject>DNLS equation</subject><subject>Well-posedness</subject><issn>0378-4754</issn><issn>1872-7166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEqXwBhxy4pawGzu2c0FCFX9SpV7gbCX2BlI1cbFTJN4eV-GMOO0cZkazH2PXCAUCytttMTST9UNRAlQF8AKQn7AFalXmCqU8ZQvgSudCVeKcXcS4BYCkqwXDzZhNH5RZv9s1-0hZEwLFqR_fM-o6slPMfJe5PtpAE40U4yU765pdpKvfu2Rvjw-vq-d8vXl6Wd2vc8ulnvJWaukkltJB6aRsLScSvO2gRtVKXooOrQZVk2t5WwuhsVLCacK6rKGqFV-ym7l3H_znIW0yQ1pBaeZI_hBNqYWsNBf_MIIERExGMRtt8DEG6sw-9EMTvg2COYI0WzODNEeQBrhJIFPsbo5R-varp2Ci7Wm05PqQABnn-78LfgDA1XxC</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Tzirakis, N.</creator><creator>Kevrekidis, P.G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20050801</creationdate><title>On the collapse arresting effects of discreteness</title><author>Tzirakis, N. ; Kevrekidis, P.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b686d6126d02d66bc3ee43bf0917b6324f1c8079edb3b94481574d8e192905973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Collapse arrest</topic><topic>Discreteness</topic><topic>DNLS equation</topic><topic>Well-posedness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzirakis, N.</creatorcontrib><creatorcontrib>Kevrekidis, P.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Mathematics and computers in simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzirakis, N.</au><au>Kevrekidis, P.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the collapse arresting effects of discreteness</atitle><jtitle>Mathematics and computers in simulation</jtitle><date>2005-08-01</date><risdate>2005</risdate><volume>69</volume><issue>5</issue><spage>553</spage><epage>566</epage><pages>553-566</pages><issn>0378-4754</issn><eissn>1872-7166</eissn><abstract>We examine the effects of discreteness on a prototypical example of a collapse exhibiting partial differential equation (PDE). As our benchmark example, we select the discrete nonlinear Schrödinger (DNLS) equation. We provide a number of physical settings where issues of the interplay of collapse and discreteness may arise and focus on the quintic, one-dimensional DNLS. We justify that collapse in the sense of continuum limit (i.e., of the L ∞ norm becoming infinite) cannot occur in the discrete setting. We support our qualitative arguments both with numerical simulations as well as with an analysis of a quasi-continuum, pseudo-differential approximation to the discrete model. Global well-posedness is proved for the latter problem in H s , for s &gt; 1 / 2 . While the collapse arresting nature of discreteness can be immediately realized, our estimates elucidate the “approach” towards the collapse-bearing continuum limit and the mechanism through which focusing arises in the latter.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matcom.2005.03.013</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4754
ispartof Mathematics and computers in simulation, 2005-08, Vol.69 (5), p.553-566
issn 0378-4754
1872-7166
language eng
recordid cdi_proquest_miscellaneous_28465834
source ScienceDirect
subjects Collapse arrest
Discreteness
DNLS equation
Well-posedness
title On the collapse arresting effects of discreteness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20collapse%20arresting%20effects%20of%20discreteness&rft.jtitle=Mathematics%20and%20computers%20in%20simulation&rft.au=Tzirakis,%20N.&rft.date=2005-08-01&rft.volume=69&rft.issue=5&rft.spage=553&rft.epage=566&rft.pages=553-566&rft.issn=0378-4754&rft.eissn=1872-7166&rft_id=info:doi/10.1016/j.matcom.2005.03.013&rft_dat=%3Cproquest_cross%3E28060111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28060111&rft_id=info:pmid/&rft_els_id=S0378475405000984&rfr_iscdi=true