Tension–compression creep asymmetry in a turbine disc superalloy: roles of internal stress and thermal ageing

The tension and compression creep behaviour of an as-received and pre-aged IN100 disc alloy have been characterised in order to validate a previous hypothesis that the unusual response of low and even negative initial creep rates in tension was caused by the presence of an internal stress field with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2004-04, Vol.52 (7), p.1761-1772
Hauptverfasser: Sondhi, S.K., Dyson, B.F., McLean, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1772
container_issue 7
container_start_page 1761
container_title Acta materialia
container_volume 52
creator Sondhi, S.K.
Dyson, B.F.
McLean, M.
description The tension and compression creep behaviour of an as-received and pre-aged IN100 disc alloy have been characterised in order to validate a previous hypothesis that the unusual response of low and even negative initial creep rates in tension was caused by the presence of an internal stress field within the alloy. Absolute values of initial creep rates in compression were found to be much greater than in tension and this asymmetric creep response is conclusive proof of the presence of an internal compressive stress field in the alloy matrix. The asymmetry was virtually removed by pre-ageing prior to creep and this is attributed to the decay of the internal stress. These features have been simulated using a microstructure-based creep model incorporating an evolving internal stress field. The model also simulates the additional (and complicating) reduction in general creep strength that is thought to be due to coarsening and dissolution of the smallest particles of the tri-modal γ ′ distribution in the alloy. The net consequence of these two competing thermal processes is that the short-term creep response is dominated by the initial magnitude of the internal stress field whereas coarsening and dissolution of the smallest γ ′ particles determines the long-term behaviour.
doi_str_mv 10.1016/j.actamat.2003.12.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28461478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645403007663</els_id><sourcerecordid>28461478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-c9219993428c4d910a23b54bfa9bb4e5ce8bc655dd8a967250d5d5090a7750ef3</originalsourceid><addsrcrecordid>eNqNkc9q3DAQxk1poGmSRwjo0t7sSrJkW7mUEpK2EOglPYuxNE612JIjaQN7yzvkDfsk0bILPaan-cNv5hvmq6pLRhtGWfdl04DJsEBuOKVtw3hDWf-uOmVD39ZcyPZ9yVup6k5I8aH6mNKGUsZ7QU-rcI8-ueD_Pr-YsKwR074iJiKuBNJuWTDHHXGeAMnbODqPxLpkSNquGGGew-6KxDBjImEqWMboYSYp7zcR8JbkPxiX0oIHdP7hvDqZYE54cYxn1e_bm_vrH_Xdr-8_r7_d1UbwIddGcaaUakthhFWMAm9HKcYJ1DgKlAaH0XRSWjuA6nouqZVWUkWh7yXFqT2rPh_2rjE8bjFlvZSrcZ7BY9gmzQfRMdEP_wPKbqCqgPIAmhhSijjpNboF4k4zqvc-6I0--qD3PmjGdfGhzH06CkAyME8RvHHp37DsOG0ZK9zXA4flLU8Oo07GoTdoXUSTtQ3uDaVXm-ijhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28456809</pqid></control><display><type>article</type><title>Tension–compression creep asymmetry in a turbine disc superalloy: roles of internal stress and thermal ageing</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sondhi, S.K. ; Dyson, B.F. ; McLean, M.</creator><creatorcontrib>Sondhi, S.K. ; Dyson, B.F. ; McLean, M.</creatorcontrib><description>The tension and compression creep behaviour of an as-received and pre-aged IN100 disc alloy have been characterised in order to validate a previous hypothesis that the unusual response of low and even negative initial creep rates in tension was caused by the presence of an internal stress field within the alloy. Absolute values of initial creep rates in compression were found to be much greater than in tension and this asymmetric creep response is conclusive proof of the presence of an internal compressive stress field in the alloy matrix. The asymmetry was virtually removed by pre-ageing prior to creep and this is attributed to the decay of the internal stress. These features have been simulated using a microstructure-based creep model incorporating an evolving internal stress field. The model also simulates the additional (and complicating) reduction in general creep strength that is thought to be due to coarsening and dissolution of the smallest particles of the tri-modal γ ′ distribution in the alloy. The net consequence of these two competing thermal processes is that the short-term creep response is dominated by the initial magnitude of the internal stress field whereas coarsening and dissolution of the smallest γ ′ particles determines the long-term behaviour.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2003.12.017</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Creep ; Exact sciences and technology ; Internal stress ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Nickel alloys ; Physics ; Tension–compression asymmetry</subject><ispartof>Acta materialia, 2004-04, Vol.52 (7), p.1761-1772</ispartof><rights>2003 Acta Materialia Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-c9219993428c4d910a23b54bfa9bb4e5ce8bc655dd8a967250d5d5090a7750ef3</citedby><cites>FETCH-LOGICAL-c428t-c9219993428c4d910a23b54bfa9bb4e5ce8bc655dd8a967250d5d5090a7750ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2003.12.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15620311$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sondhi, S.K.</creatorcontrib><creatorcontrib>Dyson, B.F.</creatorcontrib><creatorcontrib>McLean, M.</creatorcontrib><title>Tension–compression creep asymmetry in a turbine disc superalloy: roles of internal stress and thermal ageing</title><title>Acta materialia</title><description>The tension and compression creep behaviour of an as-received and pre-aged IN100 disc alloy have been characterised in order to validate a previous hypothesis that the unusual response of low and even negative initial creep rates in tension was caused by the presence of an internal stress field within the alloy. Absolute values of initial creep rates in compression were found to be much greater than in tension and this asymmetric creep response is conclusive proof of the presence of an internal compressive stress field in the alloy matrix. The asymmetry was virtually removed by pre-ageing prior to creep and this is attributed to the decay of the internal stress. These features have been simulated using a microstructure-based creep model incorporating an evolving internal stress field. The model also simulates the additional (and complicating) reduction in general creep strength that is thought to be due to coarsening and dissolution of the smallest particles of the tri-modal γ ′ distribution in the alloy. The net consequence of these two competing thermal processes is that the short-term creep response is dominated by the initial magnitude of the internal stress field whereas coarsening and dissolution of the smallest γ ′ particles determines the long-term behaviour.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Creep</subject><subject>Exact sciences and technology</subject><subject>Internal stress</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Nickel alloys</subject><subject>Physics</subject><subject>Tension–compression asymmetry</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkc9q3DAQxk1poGmSRwjo0t7sSrJkW7mUEpK2EOglPYuxNE612JIjaQN7yzvkDfsk0bILPaan-cNv5hvmq6pLRhtGWfdl04DJsEBuOKVtw3hDWf-uOmVD39ZcyPZ9yVup6k5I8aH6mNKGUsZ7QU-rcI8-ueD_Pr-YsKwR074iJiKuBNJuWTDHHXGeAMnbODqPxLpkSNquGGGew-6KxDBjImEqWMboYSYp7zcR8JbkPxiX0oIHdP7hvDqZYE54cYxn1e_bm_vrH_Xdr-8_r7_d1UbwIddGcaaUakthhFWMAm9HKcYJ1DgKlAaH0XRSWjuA6nouqZVWUkWh7yXFqT2rPh_2rjE8bjFlvZSrcZ7BY9gmzQfRMdEP_wPKbqCqgPIAmhhSijjpNboF4k4zqvc-6I0--qD3PmjGdfGhzH06CkAyME8RvHHp37DsOG0ZK9zXA4flLU8Oo07GoTdoXUSTtQ3uDaVXm-ijhA</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Sondhi, S.K.</creator><creator>Dyson, B.F.</creator><creator>McLean, M.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20040401</creationdate><title>Tension–compression creep asymmetry in a turbine disc superalloy: roles of internal stress and thermal ageing</title><author>Sondhi, S.K. ; Dyson, B.F. ; McLean, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-c9219993428c4d910a23b54bfa9bb4e5ce8bc655dd8a967250d5d5090a7750ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Creep</topic><topic>Exact sciences and technology</topic><topic>Internal stress</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Nickel alloys</topic><topic>Physics</topic><topic>Tension–compression asymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sondhi, S.K.</creatorcontrib><creatorcontrib>Dyson, B.F.</creatorcontrib><creatorcontrib>McLean, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sondhi, S.K.</au><au>Dyson, B.F.</au><au>McLean, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tension–compression creep asymmetry in a turbine disc superalloy: roles of internal stress and thermal ageing</atitle><jtitle>Acta materialia</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>52</volume><issue>7</issue><spage>1761</spage><epage>1772</epage><pages>1761-1772</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The tension and compression creep behaviour of an as-received and pre-aged IN100 disc alloy have been characterised in order to validate a previous hypothesis that the unusual response of low and even negative initial creep rates in tension was caused by the presence of an internal stress field within the alloy. Absolute values of initial creep rates in compression were found to be much greater than in tension and this asymmetric creep response is conclusive proof of the presence of an internal compressive stress field in the alloy matrix. The asymmetry was virtually removed by pre-ageing prior to creep and this is attributed to the decay of the internal stress. These features have been simulated using a microstructure-based creep model incorporating an evolving internal stress field. The model also simulates the additional (and complicating) reduction in general creep strength that is thought to be due to coarsening and dissolution of the smallest particles of the tri-modal γ ′ distribution in the alloy. The net consequence of these two competing thermal processes is that the short-term creep response is dominated by the initial magnitude of the internal stress field whereas coarsening and dissolution of the smallest γ ′ particles determines the long-term behaviour.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2003.12.017</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2004-04, Vol.52 (7), p.1761-1772
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_28461478
source Elsevier ScienceDirect Journals Complete
subjects Condensed matter: structure, mechanical and thermal properties
Creep
Exact sciences and technology
Internal stress
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Nickel alloys
Physics
Tension–compression asymmetry
title Tension–compression creep asymmetry in a turbine disc superalloy: roles of internal stress and thermal ageing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tension%E2%80%93compression%20creep%20asymmetry%20in%20a%20turbine%20disc%20superalloy:%20roles%20of%20internal%20stress%20and%20thermal%20ageing&rft.jtitle=Acta%20materialia&rft.au=Sondhi,%20S.K.&rft.date=2004-04-01&rft.volume=52&rft.issue=7&rft.spage=1761&rft.epage=1772&rft.pages=1761-1772&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2003.12.017&rft_dat=%3Cproquest_cross%3E28461478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28456809&rft_id=info:pmid/&rft_els_id=S1359645403007663&rfr_iscdi=true