Thermal–hydraulic characteristics of single-phase flow in capillary pipes

The objective of the present paper is to provide a general overview of the research carried out so far in single-phase heat transfer and flow in capillary (micro) pipes. Laminar flow and laminar-to-turbulent flow transition are analyzed in detail in order to clarify the discrepancies among the resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental thermal and fluid science 2004, Vol.28 (2), p.87-95
Hauptverfasser: Celata, G.P., Cumo, M., Zummo, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 2
container_start_page 87
container_title Experimental thermal and fluid science
container_volume 28
creator Celata, G.P.
Cumo, M.
Zummo, G.
description The objective of the present paper is to provide a general overview of the research carried out so far in single-phase heat transfer and flow in capillary (micro) pipes. Laminar flow and laminar-to-turbulent flow transition are analyzed in detail in order to clarify the discrepancies among the results obtained by different researchers. Experiments performed in the ENEA laboratory indicate that in laminar flow regime the friction factor is in good agreement with the Hagen–Poiseuille theory for Reynolds number below 600–800. For higher values of Reynolds number, experimental data depart from the Hagen–Poiseuille law to the side of higher f values. The transition from laminar to turbulent regime occurs for Reynolds number in the range 1800–2500. Diabatic experiments show that heat transfer correlations in laminar and turbulent regimes, developed for conventional tubes, are not properly adequate for heat transfer coefficient prediction in microtubes.
doi_str_mv 10.1016/S0894-1777(03)00026-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28459048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177703000268</els_id><sourcerecordid>28459048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e9e36ddf6f2070be6d2e444e4633e628a3b31dd28a88d6f4f043973e999561763</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBKRsQLAI-K-OvUKo4k9UYkFZW649JkZpEuwU1B134IachJRWsGQ1s_jevDcPoUOCzwgm4vwRS8VzUhTFCWanGGMqcrmFBkQWKqdUim00-EV20V5KLz0kKcEDdD8tIc5N9fXxWS5dNIsq2MyWJhrbQQypCzZljc9SqJ8ryNvSJMh81bxnoc6saUNVmbjM2tBC2kc73lQJDjZziJ6ur6bj23zycHM3vpzklgnZ5aCACee88BQXeAbCUeCcAxeMgaDSsBkjzvWLlE547jFnqmCglBoJUgg2RMfru21sXheQOj0PyUKfpIZmkTSVfKQwlz04WoM2NilF8LqNYd7n1QTrVXX6pzq96kVjpn-q0yvd0cbAJGsqH01tQ_oT9zEo47jnLtYc9N--BYg62QC1BRci2E67Jvzj9A1SC4Pp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28459048</pqid></control><display><type>article</type><title>Thermal–hydraulic characteristics of single-phase flow in capillary pipes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Celata, G.P. ; Cumo, M. ; Zummo, G.</creator><creatorcontrib>Celata, G.P. ; Cumo, M. ; Zummo, G.</creatorcontrib><description>The objective of the present paper is to provide a general overview of the research carried out so far in single-phase heat transfer and flow in capillary (micro) pipes. Laminar flow and laminar-to-turbulent flow transition are analyzed in detail in order to clarify the discrepancies among the results obtained by different researchers. Experiments performed in the ENEA laboratory indicate that in laminar flow regime the friction factor is in good agreement with the Hagen–Poiseuille theory for Reynolds number below 600–800. For higher values of Reynolds number, experimental data depart from the Hagen–Poiseuille law to the side of higher f values. The transition from laminar to turbulent regime occurs for Reynolds number in the range 1800–2500. Diabatic experiments show that heat transfer correlations in laminar and turbulent regimes, developed for conventional tubes, are not properly adequate for heat transfer coefficient prediction in microtubes.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/S0894-1777(03)00026-8</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied fluid mechanics ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Physics ; Transition to turbulence ; Turbulent flows, convection, and heat transfer</subject><ispartof>Experimental thermal and fluid science, 2004, Vol.28 (2), p.87-95</ispartof><rights>2003 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e9e36ddf6f2070be6d2e444e4633e628a3b31dd28a88d6f4f043973e999561763</citedby><cites>FETCH-LOGICAL-c368t-e9e36ddf6f2070be6d2e444e4633e628a3b31dd28a88d6f4f043973e999561763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0894-1777(03)00026-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15612340$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Celata, G.P.</creatorcontrib><creatorcontrib>Cumo, M.</creatorcontrib><creatorcontrib>Zummo, G.</creatorcontrib><title>Thermal–hydraulic characteristics of single-phase flow in capillary pipes</title><title>Experimental thermal and fluid science</title><description>The objective of the present paper is to provide a general overview of the research carried out so far in single-phase heat transfer and flow in capillary (micro) pipes. Laminar flow and laminar-to-turbulent flow transition are analyzed in detail in order to clarify the discrepancies among the results obtained by different researchers. Experiments performed in the ENEA laboratory indicate that in laminar flow regime the friction factor is in good agreement with the Hagen–Poiseuille theory for Reynolds number below 600–800. For higher values of Reynolds number, experimental data depart from the Hagen–Poiseuille law to the side of higher f values. The transition from laminar to turbulent regime occurs for Reynolds number in the range 1800–2500. Diabatic experiments show that heat transfer correlations in laminar and turbulent regimes, developed for conventional tubes, are not properly adequate for heat transfer coefficient prediction in microtubes.</description><subject>Applied fluid mechanics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Transition to turbulence</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBKRsQLAI-K-OvUKo4k9UYkFZW649JkZpEuwU1B134IachJRWsGQ1s_jevDcPoUOCzwgm4vwRS8VzUhTFCWanGGMqcrmFBkQWKqdUim00-EV20V5KLz0kKcEDdD8tIc5N9fXxWS5dNIsq2MyWJhrbQQypCzZljc9SqJ8ryNvSJMh81bxnoc6saUNVmbjM2tBC2kc73lQJDjZziJ6ur6bj23zycHM3vpzklgnZ5aCACee88BQXeAbCUeCcAxeMgaDSsBkjzvWLlE547jFnqmCglBoJUgg2RMfru21sXheQOj0PyUKfpIZmkTSVfKQwlz04WoM2NilF8LqNYd7n1QTrVXX6pzq96kVjpn-q0yvd0cbAJGsqH01tQ_oT9zEo47jnLtYc9N--BYg62QC1BRci2E67Jvzj9A1SC4Pp</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Celata, G.P.</creator><creator>Cumo, M.</creator><creator>Zummo, G.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2004</creationdate><title>Thermal–hydraulic characteristics of single-phase flow in capillary pipes</title><author>Celata, G.P. ; Cumo, M. ; Zummo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e9e36ddf6f2070be6d2e444e4633e628a3b31dd28a88d6f4f043973e999561763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied fluid mechanics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Transition to turbulence</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celata, G.P.</creatorcontrib><creatorcontrib>Cumo, M.</creatorcontrib><creatorcontrib>Zummo, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celata, G.P.</au><au>Cumo, M.</au><au>Zummo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal–hydraulic characteristics of single-phase flow in capillary pipes</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2004</date><risdate>2004</risdate><volume>28</volume><issue>2</issue><spage>87</spage><epage>95</epage><pages>87-95</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>The objective of the present paper is to provide a general overview of the research carried out so far in single-phase heat transfer and flow in capillary (micro) pipes. Laminar flow and laminar-to-turbulent flow transition are analyzed in detail in order to clarify the discrepancies among the results obtained by different researchers. Experiments performed in the ENEA laboratory indicate that in laminar flow regime the friction factor is in good agreement with the Hagen–Poiseuille theory for Reynolds number below 600–800. For higher values of Reynolds number, experimental data depart from the Hagen–Poiseuille law to the side of higher f values. The transition from laminar to turbulent regime occurs for Reynolds number in the range 1800–2500. Diabatic experiments show that heat transfer correlations in laminar and turbulent regimes, developed for conventional tubes, are not properly adequate for heat transfer coefficient prediction in microtubes.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0894-1777(03)00026-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2004, Vol.28 (2), p.87-95
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_miscellaneous_28459048
source ScienceDirect Journals (5 years ago - present)
subjects Applied fluid mechanics
Exact sciences and technology
Fluid dynamics
Fluidics
Fundamental areas of phenomenology (including applications)
Physics
Transition to turbulence
Turbulent flows, convection, and heat transfer
title Thermal–hydraulic characteristics of single-phase flow in capillary pipes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%E2%80%93hydraulic%20characteristics%20of%20single-phase%20flow%20in%20capillary%20pipes&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Celata,%20G.P.&rft.date=2004&rft.volume=28&rft.issue=2&rft.spage=87&rft.epage=95&rft.pages=87-95&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/S0894-1777(03)00026-8&rft_dat=%3Cproquest_cross%3E28459048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28459048&rft_id=info:pmid/&rft_els_id=S0894177703000268&rfr_iscdi=true