Variational time integrators

The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2004-05, Vol.60 (1), p.153-212
Hauptverfasser: Lew, A., Marsden, J. E., Ortiz, M., West, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 1
container_start_page 153
container_title International journal for numerical methods in engineering
container_volume 60
creator Lew, A.
Marsden, J. E.
Ortiz, M.
West, M.
description The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.958
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28457756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28457756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3</originalsourceid><addsrcrecordid>eNp90E9LwzAYx_EgCs4pvgEPO6kg1SdN0iRHGXMT5xTxD3gJafpMou06kw7du7dS8aan5_B8-B2-hOxTOKUA6dmiwlMt1AbpUdAygRTkJum1H50Ireg22YnxFYBSAaxHDh5t8Lbx9cKWg8ZXOPCLBl-CbeoQd8nW3JYR935unzxcjO6Hk2R6M74cnk8TxzNQSaFzWjCeUaVyrlNAyVlROGuZQuEw5wxEASrjTudWI6NzhTpl1joAx3TB-uSw212G-n2FsTGVjw7L0i6wXkWTKi6kFFkLj_-FFFRKNeeZbulRR12oYww4N8vgKxvWLTLfoUwbyrShWnnSyQ9f4vovZmbXo04nnfaxwc9fbcObySSTwjzNxub2mSl5xSfmjn0Bkdl2gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082194469</pqid></control><display><type>article</type><title>Variational time integrators</title><source>Access via Wiley Online Library</source><creator>Lew, A. ; Marsden, J. E. ; Ortiz, M. ; West, M.</creator><creatorcontrib>Lew, A. ; Marsden, J. E. ; Ortiz, M. ; West, M.</creatorcontrib><description>The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.958</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Accuracy ; Algorithms ; Conservation ; Convergence ; discrete mechanics ; elastodynamics ; Finite element method ; geometric integration ; Integrators ; Mathematical analysis ; Mathematical models ; multi-time-step ; subcycling ; variational integrators</subject><ispartof>International journal for numerical methods in engineering, 2004-05, Vol.60 (1), p.153-212</ispartof><rights>Copyright © 2004 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3</citedby><cites>FETCH-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.958$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.958$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Lew, A.</creatorcontrib><creatorcontrib>Marsden, J. E.</creatorcontrib><creatorcontrib>Ortiz, M.</creatorcontrib><creatorcontrib>West, M.</creatorcontrib><title>Variational time integrators</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Conservation</subject><subject>Convergence</subject><subject>discrete mechanics</subject><subject>elastodynamics</subject><subject>Finite element method</subject><subject>geometric integration</subject><subject>Integrators</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>multi-time-step</subject><subject>subcycling</subject><subject>variational integrators</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYx_EgCs4pvgEPO6kg1SdN0iRHGXMT5xTxD3gJafpMou06kw7du7dS8aan5_B8-B2-hOxTOKUA6dmiwlMt1AbpUdAygRTkJum1H50Ireg22YnxFYBSAaxHDh5t8Lbx9cKWg8ZXOPCLBl-CbeoQd8nW3JYR935unzxcjO6Hk2R6M74cnk8TxzNQSaFzWjCeUaVyrlNAyVlROGuZQuEw5wxEASrjTudWI6NzhTpl1joAx3TB-uSw212G-n2FsTGVjw7L0i6wXkWTKi6kFFkLj_-FFFRKNeeZbulRR12oYww4N8vgKxvWLTLfoUwbyrShWnnSyQ9f4vovZmbXo04nnfaxwc9fbcObySSTwjzNxub2mSl5xSfmjn0Bkdl2gA</recordid><startdate>20040507</startdate><enddate>20040507</enddate><creator>Lew, A.</creator><creator>Marsden, J. E.</creator><creator>Ortiz, M.</creator><creator>West, M.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SM</scope></search><sort><creationdate>20040507</creationdate><title>Variational time integrators</title><author>Lew, A. ; Marsden, J. E. ; Ortiz, M. ; West, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Conservation</topic><topic>Convergence</topic><topic>discrete mechanics</topic><topic>elastodynamics</topic><topic>Finite element method</topic><topic>geometric integration</topic><topic>Integrators</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>multi-time-step</topic><topic>subcycling</topic><topic>variational integrators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lew, A.</creatorcontrib><creatorcontrib>Marsden, J. E.</creatorcontrib><creatorcontrib>Ortiz, M.</creatorcontrib><creatorcontrib>West, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lew, A.</au><au>Marsden, J. E.</au><au>Ortiz, M.</au><au>West, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational time integrators</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2004-05-07</date><risdate>2004</risdate><volume>60</volume><issue>1</issue><spage>153</spage><epage>212</epage><pages>153-212</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.958</doi><tpages>60</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2004-05, Vol.60 (1), p.153-212
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_28457756
source Access via Wiley Online Library
subjects Accuracy
Algorithms
Conservation
Convergence
discrete mechanics
elastodynamics
Finite element method
geometric integration
Integrators
Mathematical analysis
Mathematical models
multi-time-step
subcycling
variational integrators
title Variational time integrators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T23%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20time%20integrators&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Lew,%20A.&rft.date=2004-05-07&rft.volume=60&rft.issue=1&rft.spage=153&rft.epage=212&rft.pages=153-212&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.958&rft_dat=%3Cproquest_cross%3E28457756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082194469&rft_id=info:pmid/&rfr_iscdi=true