Variational time integrators
The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in de...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2004-05, Vol.60 (1), p.153-212 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 1 |
container_start_page | 153 |
container_title | International journal for numerical methods in engineering |
container_volume | 60 |
creator | Lew, A. Marsden, J. E. Ortiz, M. West, M. |
description | The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.958 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28457756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28457756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3</originalsourceid><addsrcrecordid>eNp90E9LwzAYx_EgCs4pvgEPO6kg1SdN0iRHGXMT5xTxD3gJafpMou06kw7du7dS8aan5_B8-B2-hOxTOKUA6dmiwlMt1AbpUdAygRTkJum1H50Ireg22YnxFYBSAaxHDh5t8Lbx9cKWg8ZXOPCLBl-CbeoQd8nW3JYR935unzxcjO6Hk2R6M74cnk8TxzNQSaFzWjCeUaVyrlNAyVlROGuZQuEw5wxEASrjTudWI6NzhTpl1joAx3TB-uSw212G-n2FsTGVjw7L0i6wXkWTKi6kFFkLj_-FFFRKNeeZbulRR12oYww4N8vgKxvWLTLfoUwbyrShWnnSyQ9f4vovZmbXo04nnfaxwc9fbcObySSTwjzNxub2mSl5xSfmjn0Bkdl2gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082194469</pqid></control><display><type>article</type><title>Variational time integrators</title><source>Access via Wiley Online Library</source><creator>Lew, A. ; Marsden, J. E. ; Ortiz, M. ; West, M.</creator><creatorcontrib>Lew, A. ; Marsden, J. E. ; Ortiz, M. ; West, M.</creatorcontrib><description>The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.958</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Accuracy ; Algorithms ; Conservation ; Convergence ; discrete mechanics ; elastodynamics ; Finite element method ; geometric integration ; Integrators ; Mathematical analysis ; Mathematical models ; multi-time-step ; subcycling ; variational integrators</subject><ispartof>International journal for numerical methods in engineering, 2004-05, Vol.60 (1), p.153-212</ispartof><rights>Copyright © 2004 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3</citedby><cites>FETCH-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.958$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.958$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Lew, A.</creatorcontrib><creatorcontrib>Marsden, J. E.</creatorcontrib><creatorcontrib>Ortiz, M.</creatorcontrib><creatorcontrib>West, M.</creatorcontrib><title>Variational time integrators</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley & Sons, Ltd.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Conservation</subject><subject>Convergence</subject><subject>discrete mechanics</subject><subject>elastodynamics</subject><subject>Finite element method</subject><subject>geometric integration</subject><subject>Integrators</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>multi-time-step</subject><subject>subcycling</subject><subject>variational integrators</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYx_EgCs4pvgEPO6kg1SdN0iRHGXMT5xTxD3gJafpMou06kw7du7dS8aan5_B8-B2-hOxTOKUA6dmiwlMt1AbpUdAygRTkJum1H50Ireg22YnxFYBSAaxHDh5t8Lbx9cKWg8ZXOPCLBl-CbeoQd8nW3JYR935unzxcjO6Hk2R6M74cnk8TxzNQSaFzWjCeUaVyrlNAyVlROGuZQuEw5wxEASrjTudWI6NzhTpl1joAx3TB-uSw212G-n2FsTGVjw7L0i6wXkWTKi6kFFkLj_-FFFRKNeeZbulRR12oYww4N8vgKxvWLTLfoUwbyrShWnnSyQ9f4vovZmbXo04nnfaxwc9fbcObySSTwjzNxub2mSl5xSfmjn0Bkdl2gA</recordid><startdate>20040507</startdate><enddate>20040507</enddate><creator>Lew, A.</creator><creator>Marsden, J. E.</creator><creator>Ortiz, M.</creator><creator>West, M.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SM</scope></search><sort><creationdate>20040507</creationdate><title>Variational time integrators</title><author>Lew, A. ; Marsden, J. E. ; Ortiz, M. ; West, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Conservation</topic><topic>Convergence</topic><topic>discrete mechanics</topic><topic>elastodynamics</topic><topic>Finite element method</topic><topic>geometric integration</topic><topic>Integrators</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>multi-time-step</topic><topic>subcycling</topic><topic>variational integrators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lew, A.</creatorcontrib><creatorcontrib>Marsden, J. E.</creatorcontrib><creatorcontrib>Ortiz, M.</creatorcontrib><creatorcontrib>West, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lew, A.</au><au>Marsden, J. E.</au><au>Ortiz, M.</au><au>West, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational time integrators</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2004-05-07</date><risdate>2004</risdate><volume>60</volume><issue>1</issue><spage>153</spage><epage>212</epage><pages>153-212</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.958</doi><tpages>60</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2004-05, Vol.60 (1), p.153-212 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_28457756 |
source | Access via Wiley Online Library |
subjects | Accuracy Algorithms Conservation Convergence discrete mechanics elastodynamics Finite element method geometric integration Integrators Mathematical analysis Mathematical models multi-time-step subcycling variational integrators |
title | Variational time integrators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T23%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20time%20integrators&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Lew,%20A.&rft.date=2004-05-07&rft.volume=60&rft.issue=1&rft.spage=153&rft.epage=212&rft.pages=153-212&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.958&rft_dat=%3Cproquest_cross%3E28457756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082194469&rft_id=info:pmid/&rfr_iscdi=true |