Endothelial Dysfunction in Superior Mesenteric Arteries Isolated from Adenine-Induced Renal Failure in Model Rats
Endothelial dysfunction—a hallmark of chronic kidney disease (CKD)—is one of the major risk factors for cardiovascular diseases (CVD). Imbalances in endothelium-derived relaxing factors (EDRFs) and contracting factors (EDCFs) specific to endothelial dysfunction in CKD are yet to be studied. Therefor...
Gespeichert in:
Veröffentlicht in: | Biological & pharmaceutical bulletin 2023/08/01, Vol.46(8), pp.1156-1160 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Endothelial dysfunction—a hallmark of chronic kidney disease (CKD)—is one of the major risk factors for cardiovascular diseases (CVD). Imbalances in endothelium-derived relaxing factors (EDRFs) and contracting factors (EDCFs) specific to endothelial dysfunction in CKD are yet to be studied. Therefore, using adenine-treated rats—a CKD rat model—we investigated the responsiveness of superior mesenteric artery (SMA) endothelium to acetylcholine (ACh) stimulation under different experimental conditions. Nine-week-old male Wistar rats were treated daily with adenine (200 and 600 mg/kg body weight) by oral gavage, for 10 d; the two groups were named adenine-200 (200 mg/kg body weight) and adenine-600 (600 mg/kg body weight). The systolic blood pressure (measured 1-, 8-, and 15 d post-treatment) was significantly increased in the adenine-600 group compared with that in the control group; whereas that in the adenine-200 group showed only a slight increase. Moreover, in the adenine-600 group the serum creatinine and blood urea nitrogen (BUN) levels (measured at 18 d post-treatment) were significantly elevated when compared with those in control or adenine-200 groups. The ACh-mediated relaxation was slightly reduced in the adenine-200 group. The ACh- and sodium nitroprusside (SNP)-mediated relaxations were impaired in the adenine-600 group. Although no ACh-mediated contraction was observed in the presence of a nitric oxide (NO) synthase inhibitor, ACh-induced endothelium-derived hyperpolarizing factor-mediated relaxation was largely impaired in the adenine-600 mg/kg group. This study revealed that in the SMA of adenine-induced CKD model rats, EDCF signaling remained unaltered while the NO and EDHF signaling were impaired. |
---|---|
ISSN: | 0918-6158 1347-5215 |
DOI: | 10.1248/bpb.b23-00234 |