Disentangling the complex landscape of sleep–wake disorders with data‐driven phenotyping: A study of the Bernese center

Background and purpose The diagnosis of sleep–wake disorders (SWDs) is challenging because of the existence of only few accurate biomarkers and the frequent coexistence of multiple SWDs and/or other comorbidities. The aim of this study was to assess in a large cohort of well‐characterized SWD patien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of neurology 2024-01, Vol.31 (1), p.e16026-n/a
Hauptverfasser: Aellen, Florence M., Van der Meer, Julia, Dietmann, Anelia, Schmidt, Markus, Bassetti, Claudio L. A., Tzovara, Athina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e16026
container_title European journal of neurology
container_volume 31
creator Aellen, Florence M.
Van der Meer, Julia
Dietmann, Anelia
Schmidt, Markus
Bassetti, Claudio L. A.
Tzovara, Athina
description Background and purpose The diagnosis of sleep–wake disorders (SWDs) is challenging because of the existence of only few accurate biomarkers and the frequent coexistence of multiple SWDs and/or other comorbidities. The aim of this study was to assess in a large cohort of well‐characterized SWD patients the potential of a data‐driven approach for the identification of SWDs. Methods We included 6958 patients from the Bernese Sleep Registry and 300 variables/biomarkers including questionnaires, results of polysomnography/vigilance tests, and final clinical diagnoses. A pipeline, based on machine learning, was created to extract and cluster the clinical data. Our analysis was performed on three cohorts: patients with central disorders of hypersomnolence (CDHs), a full cohort of patients with SWDs, and a clean cohort without coexisting SWDs. Results A first analysis focused on the cohort of patients with CDHs and revealed four patient clusters: two clusters for narcolepsy type 1 (NT1) but not for narcolepsy type 2 or idiopathic hypersomnia. In the full cohort of SWDs, nine clusters were found: four contained patients with obstructive and central sleep apnea syndrome, one with NT1, and four with intermixed SWDs. In the cohort of patients without coexisting SWDs, an additional cluster of patients with chronic insomnia disorder was identified. Conclusions This study confirms the existence of clear clusters of NT1 in CDHs, but mainly intermixed groups in the full spectrum of SWDs, with the exception of sleep apnea syndromes and NT1. New biomarkers are needed for better phenotyping and diagnosis of SWDs.
doi_str_mv 10.1111/ene.16026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2845654145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845654145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3886-3b57e3c4b0ad930f478396427f1ad208d6c7dae09a8de7e302f15df4dfaed7d23</originalsourceid><addsrcrecordid>eNp1kb1OwzAQxy0EoqUw8ALIEgsMae3Y-WIrpXxIFSwwR258aVNSJ9gJJWLpIyDxhn0SXFoYkLjlbvjpd3f6I3RMSZfa6oGCLvWJ6--gNuV-6FDG6K6dmUcdjxLaQgfGzAghbuCSfdRigcco51EbvV9lBlQl1CTP1ARXU8BJMS9zeMO5UNIkogRcpNjkAOVq-bkQz4BlZgotQRu8yKoplqISq-WH1NkrKFxOQRVVU1rdBe5jU9WyWRvW6kvQCoxdYVeCPkR7qcgNHG17Bz1dDx8Ht87o4eZu0B85CQtD32FjLwCW8DERMmIk5UHIIp-7QUqFdEko_SSQAkgkQgmWJG5KPZlymQqQgXRZB51tvKUuXmowVTzPTAK5fRCK2sRuyD3f45R7Fj39g86KWit7naWiKCQ8opGlzjdUogtjNKRxqbO50E1MSbxOJLaJxN-JWPZka6zHc5C_5E8EFuhtgEWWQ_O_KR7eDzfKLz8GmFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899804919</pqid></control><display><type>article</type><title>Disentangling the complex landscape of sleep–wake disorders with data‐driven phenotyping: A study of the Bernese center</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Wiley Online Library</source><creator>Aellen, Florence M. ; Van der Meer, Julia ; Dietmann, Anelia ; Schmidt, Markus ; Bassetti, Claudio L. A. ; Tzovara, Athina</creator><creatorcontrib>Aellen, Florence M. ; Van der Meer, Julia ; Dietmann, Anelia ; Schmidt, Markus ; Bassetti, Claudio L. A. ; Tzovara, Athina</creatorcontrib><description>Background and purpose The diagnosis of sleep–wake disorders (SWDs) is challenging because of the existence of only few accurate biomarkers and the frequent coexistence of multiple SWDs and/or other comorbidities. The aim of this study was to assess in a large cohort of well‐characterized SWD patients the potential of a data‐driven approach for the identification of SWDs. Methods We included 6958 patients from the Bernese Sleep Registry and 300 variables/biomarkers including questionnaires, results of polysomnography/vigilance tests, and final clinical diagnoses. A pipeline, based on machine learning, was created to extract and cluster the clinical data. Our analysis was performed on three cohorts: patients with central disorders of hypersomnolence (CDHs), a full cohort of patients with SWDs, and a clean cohort without coexisting SWDs. Results A first analysis focused on the cohort of patients with CDHs and revealed four patient clusters: two clusters for narcolepsy type 1 (NT1) but not for narcolepsy type 2 or idiopathic hypersomnia. In the full cohort of SWDs, nine clusters were found: four contained patients with obstructive and central sleep apnea syndrome, one with NT1, and four with intermixed SWDs. In the cohort of patients without coexisting SWDs, an additional cluster of patients with chronic insomnia disorder was identified. Conclusions This study confirms the existence of clear clusters of NT1 in CDHs, but mainly intermixed groups in the full spectrum of SWDs, with the exception of sleep apnea syndromes and NT1. New biomarkers are needed for better phenotyping and diagnosis of SWDs.</description><identifier>ISSN: 1351-5101</identifier><identifier>ISSN: 1468-1331</identifier><identifier>EISSN: 1468-1331</identifier><identifier>DOI: 10.1111/ene.16026</identifier><identifier>PMID: 37531449</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Apnea ; Biomarkers ; central disorder of hypersomnia ; clustering ; Clusters ; Coexistence ; Comorbidity ; Diagnosis ; Disorders ; Disorders of Excessive Somnolence - diagnosis ; Disorders of Excessive Somnolence - epidemiology ; Humans ; Hypersomnia ; Insomnia ; insomnia disorder ; Machine learning ; Narcolepsy ; Neurotrophin 1 ; Phenotyping ; Polysomnography ; Sleep ; Sleep and wakefulness ; Sleep apnea ; Sleep disorders ; Sleep Wake Disorders - diagnosis ; sleep‐related breathing disorder ; sleep–wake disorders ; Vigilance</subject><ispartof>European journal of neurology, 2024-01, Vol.31 (1), p.e16026-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of European Academy of Neurology.</rights><rights>2023 The Authors. European Journal of Neurology published by John Wiley &amp; Sons Ltd on behalf of European Academy of Neurology.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3886-3b57e3c4b0ad930f478396427f1ad208d6c7dae09a8de7e302f15df4dfaed7d23</citedby><cites>FETCH-LOGICAL-c3886-3b57e3c4b0ad930f478396427f1ad208d6c7dae09a8de7e302f15df4dfaed7d23</cites><orcidid>0000-0001-9087-8359 ; 0000-0002-8949-0645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fene.16026$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fene.16026$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37531449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aellen, Florence M.</creatorcontrib><creatorcontrib>Van der Meer, Julia</creatorcontrib><creatorcontrib>Dietmann, Anelia</creatorcontrib><creatorcontrib>Schmidt, Markus</creatorcontrib><creatorcontrib>Bassetti, Claudio L. A.</creatorcontrib><creatorcontrib>Tzovara, Athina</creatorcontrib><title>Disentangling the complex landscape of sleep–wake disorders with data‐driven phenotyping: A study of the Bernese center</title><title>European journal of neurology</title><addtitle>Eur J Neurol</addtitle><description>Background and purpose The diagnosis of sleep–wake disorders (SWDs) is challenging because of the existence of only few accurate biomarkers and the frequent coexistence of multiple SWDs and/or other comorbidities. The aim of this study was to assess in a large cohort of well‐characterized SWD patients the potential of a data‐driven approach for the identification of SWDs. Methods We included 6958 patients from the Bernese Sleep Registry and 300 variables/biomarkers including questionnaires, results of polysomnography/vigilance tests, and final clinical diagnoses. A pipeline, based on machine learning, was created to extract and cluster the clinical data. Our analysis was performed on three cohorts: patients with central disorders of hypersomnolence (CDHs), a full cohort of patients with SWDs, and a clean cohort without coexisting SWDs. Results A first analysis focused on the cohort of patients with CDHs and revealed four patient clusters: two clusters for narcolepsy type 1 (NT1) but not for narcolepsy type 2 or idiopathic hypersomnia. In the full cohort of SWDs, nine clusters were found: four contained patients with obstructive and central sleep apnea syndrome, one with NT1, and four with intermixed SWDs. In the cohort of patients without coexisting SWDs, an additional cluster of patients with chronic insomnia disorder was identified. Conclusions This study confirms the existence of clear clusters of NT1 in CDHs, but mainly intermixed groups in the full spectrum of SWDs, with the exception of sleep apnea syndromes and NT1. New biomarkers are needed for better phenotyping and diagnosis of SWDs.</description><subject>Apnea</subject><subject>Biomarkers</subject><subject>central disorder of hypersomnia</subject><subject>clustering</subject><subject>Clusters</subject><subject>Coexistence</subject><subject>Comorbidity</subject><subject>Diagnosis</subject><subject>Disorders</subject><subject>Disorders of Excessive Somnolence - diagnosis</subject><subject>Disorders of Excessive Somnolence - epidemiology</subject><subject>Humans</subject><subject>Hypersomnia</subject><subject>Insomnia</subject><subject>insomnia disorder</subject><subject>Machine learning</subject><subject>Narcolepsy</subject><subject>Neurotrophin 1</subject><subject>Phenotyping</subject><subject>Polysomnography</subject><subject>Sleep</subject><subject>Sleep and wakefulness</subject><subject>Sleep apnea</subject><subject>Sleep disorders</subject><subject>Sleep Wake Disorders - diagnosis</subject><subject>sleep‐related breathing disorder</subject><subject>sleep–wake disorders</subject><subject>Vigilance</subject><issn>1351-5101</issn><issn>1468-1331</issn><issn>1468-1331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kb1OwzAQxy0EoqUw8ALIEgsMae3Y-WIrpXxIFSwwR258aVNSJ9gJJWLpIyDxhn0SXFoYkLjlbvjpd3f6I3RMSZfa6oGCLvWJ6--gNuV-6FDG6K6dmUcdjxLaQgfGzAghbuCSfdRigcco51EbvV9lBlQl1CTP1ARXU8BJMS9zeMO5UNIkogRcpNjkAOVq-bkQz4BlZgotQRu8yKoplqISq-WH1NkrKFxOQRVVU1rdBe5jU9WyWRvW6kvQCoxdYVeCPkR7qcgNHG17Bz1dDx8Ht87o4eZu0B85CQtD32FjLwCW8DERMmIk5UHIIp-7QUqFdEko_SSQAkgkQgmWJG5KPZlymQqQgXRZB51tvKUuXmowVTzPTAK5fRCK2sRuyD3f45R7Fj39g86KWit7naWiKCQ8opGlzjdUogtjNKRxqbO50E1MSbxOJLaJxN-JWPZka6zHc5C_5E8EFuhtgEWWQ_O_KR7eDzfKLz8GmFM</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Aellen, Florence M.</creator><creator>Van der Meer, Julia</creator><creator>Dietmann, Anelia</creator><creator>Schmidt, Markus</creator><creator>Bassetti, Claudio L. A.</creator><creator>Tzovara, Athina</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9087-8359</orcidid><orcidid>https://orcid.org/0000-0002-8949-0645</orcidid></search><sort><creationdate>202401</creationdate><title>Disentangling the complex landscape of sleep–wake disorders with data‐driven phenotyping: A study of the Bernese center</title><author>Aellen, Florence M. ; Van der Meer, Julia ; Dietmann, Anelia ; Schmidt, Markus ; Bassetti, Claudio L. A. ; Tzovara, Athina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3886-3b57e3c4b0ad930f478396427f1ad208d6c7dae09a8de7e302f15df4dfaed7d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apnea</topic><topic>Biomarkers</topic><topic>central disorder of hypersomnia</topic><topic>clustering</topic><topic>Clusters</topic><topic>Coexistence</topic><topic>Comorbidity</topic><topic>Diagnosis</topic><topic>Disorders</topic><topic>Disorders of Excessive Somnolence - diagnosis</topic><topic>Disorders of Excessive Somnolence - epidemiology</topic><topic>Humans</topic><topic>Hypersomnia</topic><topic>Insomnia</topic><topic>insomnia disorder</topic><topic>Machine learning</topic><topic>Narcolepsy</topic><topic>Neurotrophin 1</topic><topic>Phenotyping</topic><topic>Polysomnography</topic><topic>Sleep</topic><topic>Sleep and wakefulness</topic><topic>Sleep apnea</topic><topic>Sleep disorders</topic><topic>Sleep Wake Disorders - diagnosis</topic><topic>sleep‐related breathing disorder</topic><topic>sleep–wake disorders</topic><topic>Vigilance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aellen, Florence M.</creatorcontrib><creatorcontrib>Van der Meer, Julia</creatorcontrib><creatorcontrib>Dietmann, Anelia</creatorcontrib><creatorcontrib>Schmidt, Markus</creatorcontrib><creatorcontrib>Bassetti, Claudio L. A.</creatorcontrib><creatorcontrib>Tzovara, Athina</creatorcontrib><collection>Wiley Online Library</collection><collection>Wiley Online Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aellen, Florence M.</au><au>Van der Meer, Julia</au><au>Dietmann, Anelia</au><au>Schmidt, Markus</au><au>Bassetti, Claudio L. A.</au><au>Tzovara, Athina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disentangling the complex landscape of sleep–wake disorders with data‐driven phenotyping: A study of the Bernese center</atitle><jtitle>European journal of neurology</jtitle><addtitle>Eur J Neurol</addtitle><date>2024-01</date><risdate>2024</risdate><volume>31</volume><issue>1</issue><spage>e16026</spage><epage>n/a</epage><pages>e16026-n/a</pages><issn>1351-5101</issn><issn>1468-1331</issn><eissn>1468-1331</eissn><abstract>Background and purpose The diagnosis of sleep–wake disorders (SWDs) is challenging because of the existence of only few accurate biomarkers and the frequent coexistence of multiple SWDs and/or other comorbidities. The aim of this study was to assess in a large cohort of well‐characterized SWD patients the potential of a data‐driven approach for the identification of SWDs. Methods We included 6958 patients from the Bernese Sleep Registry and 300 variables/biomarkers including questionnaires, results of polysomnography/vigilance tests, and final clinical diagnoses. A pipeline, based on machine learning, was created to extract and cluster the clinical data. Our analysis was performed on three cohorts: patients with central disorders of hypersomnolence (CDHs), a full cohort of patients with SWDs, and a clean cohort without coexisting SWDs. Results A first analysis focused on the cohort of patients with CDHs and revealed four patient clusters: two clusters for narcolepsy type 1 (NT1) but not for narcolepsy type 2 or idiopathic hypersomnia. In the full cohort of SWDs, nine clusters were found: four contained patients with obstructive and central sleep apnea syndrome, one with NT1, and four with intermixed SWDs. In the cohort of patients without coexisting SWDs, an additional cluster of patients with chronic insomnia disorder was identified. Conclusions This study confirms the existence of clear clusters of NT1 in CDHs, but mainly intermixed groups in the full spectrum of SWDs, with the exception of sleep apnea syndromes and NT1. New biomarkers are needed for better phenotyping and diagnosis of SWDs.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37531449</pmid><doi>10.1111/ene.16026</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9087-8359</orcidid><orcidid>https://orcid.org/0000-0002-8949-0645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1351-5101
ispartof European journal of neurology, 2024-01, Vol.31 (1), p.e16026-n/a
issn 1351-5101
1468-1331
1468-1331
language eng
recordid cdi_proquest_miscellaneous_2845654145
source PubMed (Medline); MEDLINE; Wiley Online Library
subjects Apnea
Biomarkers
central disorder of hypersomnia
clustering
Clusters
Coexistence
Comorbidity
Diagnosis
Disorders
Disorders of Excessive Somnolence - diagnosis
Disorders of Excessive Somnolence - epidemiology
Humans
Hypersomnia
Insomnia
insomnia disorder
Machine learning
Narcolepsy
Neurotrophin 1
Phenotyping
Polysomnography
Sleep
Sleep and wakefulness
Sleep apnea
Sleep disorders
Sleep Wake Disorders - diagnosis
sleep‐related breathing disorder
sleep–wake disorders
Vigilance
title Disentangling the complex landscape of sleep–wake disorders with data‐driven phenotyping: A study of the Bernese center
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disentangling%20the%20complex%20landscape%20of%20sleep%E2%80%93wake%20disorders%20with%20data%E2%80%90driven%20phenotyping:%20A%20study%20of%20the%20Bernese%20center&rft.jtitle=European%20journal%20of%20neurology&rft.au=Aellen,%20Florence%20M.&rft.date=2024-01&rft.volume=31&rft.issue=1&rft.spage=e16026&rft.epage=n/a&rft.pages=e16026-n/a&rft.issn=1351-5101&rft.eissn=1468-1331&rft_id=info:doi/10.1111/ene.16026&rft_dat=%3Cproquest_cross%3E2845654145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899804919&rft_id=info:pmid/37531449&rfr_iscdi=true