Nonexistence of spatially bounded force-free magnetic fields: a scaling point of view
Force-free magnetic fields obey the vector differential equation /spl nabla/xB=/spl alpha/B. In the absence of any displacement current, the magnetic force on the conduction current is then zero. A previous proof of the nonexistence of spatially bounded force-free fields is simplified and is shown t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 1994-06, Vol.22 (3), p.275-277 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 277 |
---|---|
container_issue | 3 |
container_start_page | 275 |
container_title | IEEE transactions on plasma science |
container_volume | 22 |
creator | Brownstein, K.R. |
description | Force-free magnetic fields obey the vector differential equation /spl nabla/xB=/spl alpha/B. In the absence of any displacement current, the magnetic force on the conduction current is then zero. A previous proof of the nonexistence of spatially bounded force-free fields is simplified and is shown to be purely mathematical in nature, with no need to introduce non-magnetic stresses. A new nonexistence proof, based only on the scaling properties of the differential equation, is presented.< > |
doi_str_mv | 10.1109/27.297878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28455415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>297878</ieee_id><sourcerecordid>28455415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-bfe2d75516a645d1b1617ae948ffa7c4a283394a768a76528abcee48f8eb592e3</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKsLt66CiOBi6uTVJO6k-ALRja6HTOZGUqZJTaY-_r0pLV24uNzF-e45l4PQKaknhNT6msoJ1VJJtYdGRDNdaSbFPhrVtWYVU4QdoqOc53VNuKjpCL2_xAA_Pg8QLODocF6awZu-_8VtXIUOOuxislC5BIAX5iPA4C12Hvou32CDszW9Dx94GX0Y1gZfHr6P0YEzfYaT7R6j9_u7t9lj9fz68DS7fa4sY2yoWge0k0KQqZly0ZGWTIk0oLlyzkjLDVWMaW7kVJURVJnWAhRVQSs0BTZGlxvfZYqfK8hDs_DZQt-bAHGVG6q4EJyIAp7_A-dxlUL5rSG65HMtdIGuNpBNMecErlkmvzDptyF1s263obLZtFvYi62hWTfgkgnW591BySSC8oKdbTAPADt16_EH22uA_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195164959</pqid></control><display><type>article</type><title>Nonexistence of spatially bounded force-free magnetic fields: a scaling point of view</title><source>IEEE Electronic Library (IEL)</source><creator>Brownstein, K.R.</creator><creatorcontrib>Brownstein, K.R.</creatorcontrib><description>Force-free magnetic fields obey the vector differential equation /spl nabla/xB=/spl alpha/B. In the absence of any displacement current, the magnetic force on the conduction current is then zero. A previous proof of the nonexistence of spatially bounded force-free fields is simplified and is shown to be purely mathematical in nature, with no need to introduce non-magnetic stresses. A new nonexistence proof, based only on the scaling properties of the differential equation, is presented.< ></description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/27.297878</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Astronomy ; Astrophysics ; Classical and quantum physics: mechanics and fields ; Classical electromagnetism, maxwell equations ; Classical field theories ; Current density ; Differential equations ; Exact sciences and technology ; Magnetic confinement ; Magnetic fields ; Magnetic forces ; Magnetism ; Nuclear and plasma sciences ; Physics ; Tensile stress</subject><ispartof>IEEE transactions on plasma science, 1994-06, Vol.22 (3), p.275-277</ispartof><rights>1994 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-bfe2d75516a645d1b1617ae948ffa7c4a283394a768a76528abcee48f8eb592e3</citedby><cites>FETCH-LOGICAL-c333t-bfe2d75516a645d1b1617ae948ffa7c4a283394a768a76528abcee48f8eb592e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/297878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/297878$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4151524$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brownstein, K.R.</creatorcontrib><title>Nonexistence of spatially bounded force-free magnetic fields: a scaling point of view</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Force-free magnetic fields obey the vector differential equation /spl nabla/xB=/spl alpha/B. In the absence of any displacement current, the magnetic force on the conduction current is then zero. A previous proof of the nonexistence of spatially bounded force-free fields is simplified and is shown to be purely mathematical in nature, with no need to introduce non-magnetic stresses. A new nonexistence proof, based only on the scaling properties of the differential equation, is presented.< ></description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical electromagnetism, maxwell equations</subject><subject>Classical field theories</subject><subject>Current density</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Magnetic confinement</subject><subject>Magnetic fields</subject><subject>Magnetic forces</subject><subject>Magnetism</subject><subject>Nuclear and plasma sciences</subject><subject>Physics</subject><subject>Tensile stress</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWKsLt66CiOBi6uTVJO6k-ALRja6HTOZGUqZJTaY-_r0pLV24uNzF-e45l4PQKaknhNT6msoJ1VJJtYdGRDNdaSbFPhrVtWYVU4QdoqOc53VNuKjpCL2_xAA_Pg8QLODocF6awZu-_8VtXIUOOuxislC5BIAX5iPA4C12Hvou32CDszW9Dx94GX0Y1gZfHr6P0YEzfYaT7R6j9_u7t9lj9fz68DS7fa4sY2yoWge0k0KQqZly0ZGWTIk0oLlyzkjLDVWMaW7kVJURVJnWAhRVQSs0BTZGlxvfZYqfK8hDs_DZQt-bAHGVG6q4EJyIAp7_A-dxlUL5rSG65HMtdIGuNpBNMecErlkmvzDptyF1s263obLZtFvYi62hWTfgkgnW591BySSC8oKdbTAPADt16_EH22uA_w</recordid><startdate>19940601</startdate><enddate>19940601</enddate><creator>Brownstein, K.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19940601</creationdate><title>Nonexistence of spatially bounded force-free magnetic fields: a scaling point of view</title><author>Brownstein, K.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-bfe2d75516a645d1b1617ae948ffa7c4a283394a768a76528abcee48f8eb592e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical electromagnetism, maxwell equations</topic><topic>Classical field theories</topic><topic>Current density</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Magnetic confinement</topic><topic>Magnetic fields</topic><topic>Magnetic forces</topic><topic>Magnetism</topic><topic>Nuclear and plasma sciences</topic><topic>Physics</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brownstein, K.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brownstein, K.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonexistence of spatially bounded force-free magnetic fields: a scaling point of view</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>1994-06-01</date><risdate>1994</risdate><volume>22</volume><issue>3</issue><spage>275</spage><epage>277</epage><pages>275-277</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Force-free magnetic fields obey the vector differential equation /spl nabla/xB=/spl alpha/B. In the absence of any displacement current, the magnetic force on the conduction current is then zero. A previous proof of the nonexistence of spatially bounded force-free fields is simplified and is shown to be purely mathematical in nature, with no need to introduce non-magnetic stresses. A new nonexistence proof, based only on the scaling properties of the differential equation, is presented.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/27.297878</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 1994-06, Vol.22 (3), p.275-277 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_miscellaneous_28455415 |
source | IEEE Electronic Library (IEL) |
subjects | Astronomy Astrophysics Classical and quantum physics: mechanics and fields Classical electromagnetism, maxwell equations Classical field theories Current density Differential equations Exact sciences and technology Magnetic confinement Magnetic fields Magnetic forces Magnetism Nuclear and plasma sciences Physics Tensile stress |
title | Nonexistence of spatially bounded force-free magnetic fields: a scaling point of view |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonexistence%20of%20spatially%20bounded%20force-free%20magnetic%20fields:%20a%20scaling%20point%20of%20view&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Brownstein,%20K.R.&rft.date=1994-06-01&rft.volume=22&rft.issue=3&rft.spage=275&rft.epage=277&rft.pages=275-277&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/27.297878&rft_dat=%3Cproquest_RIE%3E28455415%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195164959&rft_id=info:pmid/&rft_ieee_id=297878&rfr_iscdi=true |