On the value of learning for Bernoulli bandits with unknown parameters

Investigates the multiarmed bandit problem, where each arm generates an infinite sequence of Bernoulli distributed rewards. The parameters of these Bernoulli distributions are unknown and initially assumed to be beta-distributed. Every time a bandit is selected, its beta-distribution is updated to n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2000-11, Vol.45 (11), p.2135-2140
Hauptverfasser: Bhulai, S., Koole, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2140
container_issue 11
container_start_page 2135
container_title IEEE transactions on automatic control
container_volume 45
creator Bhulai, S.
Koole, G.
description Investigates the multiarmed bandit problem, where each arm generates an infinite sequence of Bernoulli distributed rewards. The parameters of these Bernoulli distributions are unknown and initially assumed to be beta-distributed. Every time a bandit is selected, its beta-distribution is updated to new information in a Bayesian way. The objective is to maximize the long-term discounted rewards. We study the relationship between the necessity of acquiring additional information and the reward. This is done by considering two extreme situations, which occur when a bandit has been played N times: the situation where the decision maker stops learning and the situation where the decision maker acquires full information about that bandit. We show that the difference in reward between this lower and upper bound goes to zero as N grows large.
doi_str_mv 10.1109/9.887641
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28451601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>887641</ieee_id><sourcerecordid>28985090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-4e7ef075957809607b3e25e369fa6d9eeb56b41630241046738720d655651fa63</originalsourceid><addsrcrecordid>eNqN0T1LA0EQBuBFFIxRsLZaLMTm4n5_lBqMCkIarY-9ZM5svOzG3TuD_96TBAULsRqGeXhheBE6pWREKbFXdmSMVoLuoQGV0hRMMr6PBoRQU1hm1CE6ynnZr0oIOkCTacDtAvC7azrAscYNuBR8eMF1TPgGUohd03hcuTD3bcYb3y5wF15D3AS8dsmtoIWUj9FB7ZoMJ7s5RM-T26fxffE4vXsYXz8WM8FFWwjQUBMtrdSGWEV0xYFJ4MrWTs0tQCVVJajihAlKhNLcaEbmSkolaU_4EF1sc9cpvnWQ23Ll8wyaxgWIXS6ZsUYSS_4BhaSK0B5e_gkp4ZRZbbTu6fkvuoxdCv2_pTHCcCqF_smbpZhzgrpcJ79y6aNPKr8aKm25bainZ1vqAeCb7Y6fP6-IAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884831547</pqid></control><display><type>article</type><title>On the value of learning for Bernoulli bandits with unknown parameters</title><source>IEEE Electronic Library (IEL)</source><creator>Bhulai, S. ; Koole, G.</creator><creatorcontrib>Bhulai, S. ; Koole, G.</creatorcontrib><description>Investigates the multiarmed bandit problem, where each arm generates an infinite sequence of Bernoulli distributed rewards. The parameters of these Bernoulli distributions are unknown and initially assumed to be beta-distributed. Every time a bandit is selected, its beta-distribution is updated to new information in a Bayesian way. The objective is to maximize the long-term discounted rewards. We study the relationship between the necessity of acquiring additional information and the reward. This is done by considering two extreme situations, which occur when a bandit has been played N times: the situation where the decision maker stops learning and the situation where the decision maker acquires full information about that bandit. We show that the difference in reward between this lower and upper bound goes to zero as N grows large.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.887641</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Arm ; Automatic control ; Bayesian analysis ; Bayesian methods ; Clinical trials ; Closed-form solution ; Decision making ; Diseases ; Dynamic programming ; Equations ; Learning ; Minimax techniques ; Plugs ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on automatic control, 2000-11, Vol.45 (11), p.2135-2140</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-4e7ef075957809607b3e25e369fa6d9eeb56b41630241046738720d655651fa63</citedby><cites>FETCH-LOGICAL-c434t-4e7ef075957809607b3e25e369fa6d9eeb56b41630241046738720d655651fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/887641$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/887641$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhulai, S.</creatorcontrib><creatorcontrib>Koole, G.</creatorcontrib><title>On the value of learning for Bernoulli bandits with unknown parameters</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Investigates the multiarmed bandit problem, where each arm generates an infinite sequence of Bernoulli distributed rewards. The parameters of these Bernoulli distributions are unknown and initially assumed to be beta-distributed. Every time a bandit is selected, its beta-distribution is updated to new information in a Bayesian way. The objective is to maximize the long-term discounted rewards. We study the relationship between the necessity of acquiring additional information and the reward. This is done by considering two extreme situations, which occur when a bandit has been played N times: the situation where the decision maker stops learning and the situation where the decision maker acquires full information about that bandit. We show that the difference in reward between this lower and upper bound goes to zero as N grows large.</description><subject>Adaptive control</subject><subject>Arm</subject><subject>Automatic control</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Clinical trials</subject><subject>Closed-form solution</subject><subject>Decision making</subject><subject>Diseases</subject><subject>Dynamic programming</subject><subject>Equations</subject><subject>Learning</subject><subject>Minimax techniques</subject><subject>Plugs</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0T1LA0EQBuBFFIxRsLZaLMTm4n5_lBqMCkIarY-9ZM5svOzG3TuD_96TBAULsRqGeXhheBE6pWREKbFXdmSMVoLuoQGV0hRMMr6PBoRQU1hm1CE6ynnZr0oIOkCTacDtAvC7azrAscYNuBR8eMF1TPgGUohd03hcuTD3bcYb3y5wF15D3AS8dsmtoIWUj9FB7ZoMJ7s5RM-T26fxffE4vXsYXz8WM8FFWwjQUBMtrdSGWEV0xYFJ4MrWTs0tQCVVJajihAlKhNLcaEbmSkolaU_4EF1sc9cpvnWQ23Ll8wyaxgWIXS6ZsUYSS_4BhaSK0B5e_gkp4ZRZbbTu6fkvuoxdCv2_pTHCcCqF_smbpZhzgrpcJ79y6aNPKr8aKm25bainZ1vqAeCb7Y6fP6-IAw</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Bhulai, S.</creator><creator>Koole, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>20001101</creationdate><title>On the value of learning for Bernoulli bandits with unknown parameters</title><author>Bhulai, S. ; Koole, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-4e7ef075957809607b3e25e369fa6d9eeb56b41630241046738720d655651fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive control</topic><topic>Arm</topic><topic>Automatic control</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Clinical trials</topic><topic>Closed-form solution</topic><topic>Decision making</topic><topic>Diseases</topic><topic>Dynamic programming</topic><topic>Equations</topic><topic>Learning</topic><topic>Minimax techniques</topic><topic>Plugs</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhulai, S.</creatorcontrib><creatorcontrib>Koole, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhulai, S.</au><au>Koole, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the value of learning for Bernoulli bandits with unknown parameters</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2000-11-01</date><risdate>2000</risdate><volume>45</volume><issue>11</issue><spage>2135</spage><epage>2140</epage><pages>2135-2140</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Investigates the multiarmed bandit problem, where each arm generates an infinite sequence of Bernoulli distributed rewards. The parameters of these Bernoulli distributions are unknown and initially assumed to be beta-distributed. Every time a bandit is selected, its beta-distribution is updated to new information in a Bayesian way. The objective is to maximize the long-term discounted rewards. We study the relationship between the necessity of acquiring additional information and the reward. This is done by considering two extreme situations, which occur when a bandit has been played N times: the situation where the decision maker stops learning and the situation where the decision maker acquires full information about that bandit. We show that the difference in reward between this lower and upper bound goes to zero as N grows large.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/9.887641</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2000-11, Vol.45 (11), p.2135-2140
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28451601
source IEEE Electronic Library (IEL)
subjects Adaptive control
Arm
Automatic control
Bayesian analysis
Bayesian methods
Clinical trials
Closed-form solution
Decision making
Diseases
Dynamic programming
Equations
Learning
Minimax techniques
Plugs
Upper bound
Upper bounds
title On the value of learning for Bernoulli bandits with unknown parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20value%20of%20learning%20for%20Bernoulli%20bandits%20with%20unknown%20parameters&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bhulai,%20S.&rft.date=2000-11-01&rft.volume=45&rft.issue=11&rft.spage=2135&rft.epage=2140&rft.pages=2135-2140&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.887641&rft_dat=%3Cproquest_RIE%3E28985090%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884831547&rft_id=info:pmid/&rft_ieee_id=887641&rfr_iscdi=true