Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning

Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2023-08, Vol.48 (15), p.3961-3964
Hauptverfasser: Cai, Rui, Xiao, Yao, Sui, Xiaolin, Li, Yongyi, Wu, Ziyan, Wu, Jie, Deng, Guoliang, Zhou, Hao, Zhou, Shouhuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3964
container_issue 15
container_start_page 3961
container_title Optics letters
container_volume 48
creator Cai, Rui
Xiao, Yao
Sui, Xiaolin
Li, Yongyi
Wu, Ziyan
Wu, Jie
Deng, Guoliang
Zhou, Hao
Zhou, Shouhuan
description Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.
doi_str_mv 10.1364/OL.492737
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2845107837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844859533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-dc9486197bc8b4ea2ee51b685f76dc24b13526a96e7f577345c551da0b88fa223</originalsourceid><addsrcrecordid>eNpd0LtOwzAUBmALgWi5DLwAssQCQ4qvcTyiiptUqQvMkeOcoFSJHWwH1LcnVQsD0xnOp1_n_AhdUbKgPBf369VCaKa4OkJzKrnOhNLiGM0JFXmmpWYzdBbjhhCSK85P0YwryRTRfI7ape8HYxP-Nl_QQ4KAW2d9GHwwqXUfuIE--QjWuxp3JkLIWlePFmocx9AYC9gZ52MKo01jgIjBmaqb1tUW1wAD7sAENyVdoJPGdBEuD_McvT89vi1fstX6-XX5sMrs9EHKaqtFkVOtKltUAgwDkLTKC9movLZMVJRLlhudg2qkUlxIKyWtDamKojGM8XN0u88dgv8cIaayb6OFrjMO_BhLVghJiSq4mujNP7rxY3DTdTslCqkl55O62ysbfIwBmnIIbW_CtqSk3PVfrlflvv_JXh8Sx6qH-k_-Fs5_AFgbgRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844859533</pqid></control><display><type>article</type><title>Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning</title><source>Optica Publishing Group Journals</source><creator>Cai, Rui ; Xiao, Yao ; Sui, Xiaolin ; Li, Yongyi ; Wu, Ziyan ; Wu, Jie ; Deng, Guoliang ; Zhou, Hao ; Zhou, Shouhuan</creator><creatorcontrib>Cai, Rui ; Xiao, Yao ; Sui, Xiaolin ; Li, Yongyi ; Wu, Ziyan ; Wu, Jie ; Deng, Guoliang ; Zhou, Hao ; Zhou, Shouhuan</creatorcontrib><description>Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.492737</identifier><identifier>PMID: 37527093</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Background noise ; Nanostructure ; Neural networks ; Sapphire ; Scattering ; Speckle patterns ; Spectrometers ; Wavemeters</subject><ispartof>Optics letters, 2023-08, Vol.48 (15), p.3961-3964</ispartof><rights>Copyright Optical Society of America Aug 1, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-dc9486197bc8b4ea2ee51b685f76dc24b13526a96e7f577345c551da0b88fa223</cites><orcidid>0000-0003-3684-3408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3246,27906,27907</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37527093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Sui, Xiaolin</creatorcontrib><creatorcontrib>Li, Yongyi</creatorcontrib><creatorcontrib>Wu, Ziyan</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Deng, Guoliang</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Zhou, Shouhuan</creatorcontrib><title>Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.</description><subject>Background noise</subject><subject>Nanostructure</subject><subject>Neural networks</subject><subject>Sapphire</subject><subject>Scattering</subject><subject>Speckle patterns</subject><subject>Spectrometers</subject><subject>Wavemeters</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0LtOwzAUBmALgWi5DLwAssQCQ4qvcTyiiptUqQvMkeOcoFSJHWwH1LcnVQsD0xnOp1_n_AhdUbKgPBf369VCaKa4OkJzKrnOhNLiGM0JFXmmpWYzdBbjhhCSK85P0YwryRTRfI7ape8HYxP-Nl_QQ4KAW2d9GHwwqXUfuIE--QjWuxp3JkLIWlePFmocx9AYC9gZ52MKo01jgIjBmaqb1tUW1wAD7sAENyVdoJPGdBEuD_McvT89vi1fstX6-XX5sMrs9EHKaqtFkVOtKltUAgwDkLTKC9movLZMVJRLlhudg2qkUlxIKyWtDamKojGM8XN0u88dgv8cIaayb6OFrjMO_BhLVghJiSq4mujNP7rxY3DTdTslCqkl55O62ysbfIwBmnIIbW_CtqSk3PVfrlflvv_JXh8Sx6qH-k_-Fs5_AFgbgRo</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Cai, Rui</creator><creator>Xiao, Yao</creator><creator>Sui, Xiaolin</creator><creator>Li, Yongyi</creator><creator>Wu, Ziyan</creator><creator>Wu, Jie</creator><creator>Deng, Guoliang</creator><creator>Zhou, Hao</creator><creator>Zhou, Shouhuan</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3684-3408</orcidid></search><sort><creationdate>20230801</creationdate><title>Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning</title><author>Cai, Rui ; Xiao, Yao ; Sui, Xiaolin ; Li, Yongyi ; Wu, Ziyan ; Wu, Jie ; Deng, Guoliang ; Zhou, Hao ; Zhou, Shouhuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-dc9486197bc8b4ea2ee51b685f76dc24b13526a96e7f577345c551da0b88fa223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Background noise</topic><topic>Nanostructure</topic><topic>Neural networks</topic><topic>Sapphire</topic><topic>Scattering</topic><topic>Speckle patterns</topic><topic>Spectrometers</topic><topic>Wavemeters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Sui, Xiaolin</creatorcontrib><creatorcontrib>Li, Yongyi</creatorcontrib><creatorcontrib>Wu, Ziyan</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Deng, Guoliang</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Zhou, Shouhuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Rui</au><au>Xiao, Yao</au><au>Sui, Xiaolin</au><au>Li, Yongyi</au><au>Wu, Ziyan</au><au>Wu, Jie</au><au>Deng, Guoliang</au><au>Zhou, Hao</au><au>Zhou, Shouhuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>48</volume><issue>15</issue><spage>3961</spage><epage>3964</epage><pages>3961-3964</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>37527093</pmid><doi>10.1364/OL.492737</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3684-3408</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2023-08, Vol.48 (15), p.3961-3964
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2845107837
source Optica Publishing Group Journals
subjects Background noise
Nanostructure
Neural networks
Sapphire
Scattering
Speckle patterns
Spectrometers
Wavemeters
title Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20wavemeter%20incorporating%20femtosecond%20laser-induced%20surface%20nanostructures%20enabled%20by%20deep%20learning&rft.jtitle=Optics%20letters&rft.au=Cai,%20Rui&rft.date=2023-08-01&rft.volume=48&rft.issue=15&rft.spage=3961&rft.epage=3964&rft.pages=3961-3964&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.492737&rft_dat=%3Cproquest_cross%3E2844859533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844859533&rft_id=info:pmid/37527093&rfr_iscdi=true