Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning
Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-p...
Gespeichert in:
Veröffentlicht in: | Optics letters 2023-08, Vol.48 (15), p.3961-3964 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3964 |
---|---|
container_issue | 15 |
container_start_page | 3961 |
container_title | Optics letters |
container_volume | 48 |
creator | Cai, Rui Xiao, Yao Sui, Xiaolin Li, Yongyi Wu, Ziyan Wu, Jie Deng, Guoliang Zhou, Hao Zhou, Shouhuan |
description | Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters. |
doi_str_mv | 10.1364/OL.492737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2845107837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844859533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-dc9486197bc8b4ea2ee51b685f76dc24b13526a96e7f577345c551da0b88fa223</originalsourceid><addsrcrecordid>eNpd0LtOwzAUBmALgWi5DLwAssQCQ4qvcTyiiptUqQvMkeOcoFSJHWwH1LcnVQsD0xnOp1_n_AhdUbKgPBf369VCaKa4OkJzKrnOhNLiGM0JFXmmpWYzdBbjhhCSK85P0YwryRTRfI7ape8HYxP-Nl_QQ4KAW2d9GHwwqXUfuIE--QjWuxp3JkLIWlePFmocx9AYC9gZ52MKo01jgIjBmaqb1tUW1wAD7sAENyVdoJPGdBEuD_McvT89vi1fstX6-XX5sMrs9EHKaqtFkVOtKltUAgwDkLTKC9movLZMVJRLlhudg2qkUlxIKyWtDamKojGM8XN0u88dgv8cIaayb6OFrjMO_BhLVghJiSq4mujNP7rxY3DTdTslCqkl55O62ysbfIwBmnIIbW_CtqSk3PVfrlflvv_JXh8Sx6qH-k_-Fs5_AFgbgRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844859533</pqid></control><display><type>article</type><title>Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning</title><source>Optica Publishing Group Journals</source><creator>Cai, Rui ; Xiao, Yao ; Sui, Xiaolin ; Li, Yongyi ; Wu, Ziyan ; Wu, Jie ; Deng, Guoliang ; Zhou, Hao ; Zhou, Shouhuan</creator><creatorcontrib>Cai, Rui ; Xiao, Yao ; Sui, Xiaolin ; Li, Yongyi ; Wu, Ziyan ; Wu, Jie ; Deng, Guoliang ; Zhou, Hao ; Zhou, Shouhuan</creatorcontrib><description>Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.492737</identifier><identifier>PMID: 37527093</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Background noise ; Nanostructure ; Neural networks ; Sapphire ; Scattering ; Speckle patterns ; Spectrometers ; Wavemeters</subject><ispartof>Optics letters, 2023-08, Vol.48 (15), p.3961-3964</ispartof><rights>Copyright Optical Society of America Aug 1, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-dc9486197bc8b4ea2ee51b685f76dc24b13526a96e7f577345c551da0b88fa223</cites><orcidid>0000-0003-3684-3408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3246,27906,27907</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37527093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Sui, Xiaolin</creatorcontrib><creatorcontrib>Li, Yongyi</creatorcontrib><creatorcontrib>Wu, Ziyan</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Deng, Guoliang</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Zhou, Shouhuan</creatorcontrib><title>Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.</description><subject>Background noise</subject><subject>Nanostructure</subject><subject>Neural networks</subject><subject>Sapphire</subject><subject>Scattering</subject><subject>Speckle patterns</subject><subject>Spectrometers</subject><subject>Wavemeters</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0LtOwzAUBmALgWi5DLwAssQCQ4qvcTyiiptUqQvMkeOcoFSJHWwH1LcnVQsD0xnOp1_n_AhdUbKgPBf369VCaKa4OkJzKrnOhNLiGM0JFXmmpWYzdBbjhhCSK85P0YwryRTRfI7ape8HYxP-Nl_QQ4KAW2d9GHwwqXUfuIE--QjWuxp3JkLIWlePFmocx9AYC9gZ52MKo01jgIjBmaqb1tUW1wAD7sAENyVdoJPGdBEuD_McvT89vi1fstX6-XX5sMrs9EHKaqtFkVOtKltUAgwDkLTKC9movLZMVJRLlhudg2qkUlxIKyWtDamKojGM8XN0u88dgv8cIaayb6OFrjMO_BhLVghJiSq4mujNP7rxY3DTdTslCqkl55O62ysbfIwBmnIIbW_CtqSk3PVfrlflvv_JXh8Sx6qH-k_-Fs5_AFgbgRo</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Cai, Rui</creator><creator>Xiao, Yao</creator><creator>Sui, Xiaolin</creator><creator>Li, Yongyi</creator><creator>Wu, Ziyan</creator><creator>Wu, Jie</creator><creator>Deng, Guoliang</creator><creator>Zhou, Hao</creator><creator>Zhou, Shouhuan</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3684-3408</orcidid></search><sort><creationdate>20230801</creationdate><title>Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning</title><author>Cai, Rui ; Xiao, Yao ; Sui, Xiaolin ; Li, Yongyi ; Wu, Ziyan ; Wu, Jie ; Deng, Guoliang ; Zhou, Hao ; Zhou, Shouhuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-dc9486197bc8b4ea2ee51b685f76dc24b13526a96e7f577345c551da0b88fa223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Background noise</topic><topic>Nanostructure</topic><topic>Neural networks</topic><topic>Sapphire</topic><topic>Scattering</topic><topic>Speckle patterns</topic><topic>Spectrometers</topic><topic>Wavemeters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Sui, Xiaolin</creatorcontrib><creatorcontrib>Li, Yongyi</creatorcontrib><creatorcontrib>Wu, Ziyan</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Deng, Guoliang</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Zhou, Shouhuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Rui</au><au>Xiao, Yao</au><au>Sui, Xiaolin</au><au>Li, Yongyi</au><au>Wu, Ziyan</au><au>Wu, Jie</au><au>Deng, Guoliang</au><au>Zhou, Hao</au><au>Zhou, Shouhuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>48</volume><issue>15</issue><spage>3961</spage><epage>3964</epage><pages>3961-3964</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>37527093</pmid><doi>10.1364/OL.492737</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3684-3408</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2023-08, Vol.48 (15), p.3961-3964 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_2845107837 |
source | Optica Publishing Group Journals |
subjects | Background noise Nanostructure Neural networks Sapphire Scattering Speckle patterns Spectrometers Wavemeters |
title | Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20wavemeter%20incorporating%20femtosecond%20laser-induced%20surface%20nanostructures%20enabled%20by%20deep%20learning&rft.jtitle=Optics%20letters&rft.au=Cai,%20Rui&rft.date=2023-08-01&rft.volume=48&rft.issue=15&rft.spage=3961&rft.epage=3964&rft.pages=3961-3964&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.492737&rft_dat=%3Cproquest_cross%3E2844859533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844859533&rft_id=info:pmid/37527093&rfr_iscdi=true |