Selective expression of light-harvesting complexes alters phospholipid composition in the intracytoplasmic membrane and core complex of purple phototrophic bacteria

Phospholipid–protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been geneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Bioenergetics 2023-11, Vol.1864 (4), p.149001-149001, Article 149001
Hauptverfasser: Satoh, I., Gotou, K., Nagatsuma, S., Nagashima, K.V.P., Kobayashi, M., Yu, L.-J., Madigan, M.T., Kimura, Y., Wang-Otomo, Z.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149001
container_issue 4
container_start_page 149001
container_title Biochimica et biophysica acta. Bioenergetics
container_volume 1864
creator Satoh, I.
Gotou, K.
Nagatsuma, S.
Nagashima, K.V.P.
Kobayashi, M.
Yu, L.-J.
Madigan, M.T.
Kimura, Y.
Wang-Otomo, Z.-Y.
description Phospholipid–protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1–reaction center core complexes (LH1–RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1–RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex–phospholipid interactions. •Removal of LH2 results in significant changes in phospholipid composition of ICM.•Substitution of LH1 alters phospholipid composition of ICM in the absence of LH2.•Selectively expressed LH1–RCs have different phospholipid compositions.•Effects of carotenoids on phospholipid composition appear to be species-dependent.
doi_str_mv 10.1016/j.bbabio.2023.149001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2845105674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005272823000476</els_id><sourcerecordid>2845105674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d606ec92798e846977fd49f9a05b60929cd2a545ee02a31ddc986e280e6373843</originalsourceid><addsrcrecordid>eNp9kc1uFSEUx4mxsdfqGxgzSzdzBWYGho2JaWxr0sRFdU0YONPhhhkQuDft-_igMp3WpQtySPh_cPJD6APBe4IJ-3zYD4MarN9TTJs9aQXG5BXakZ6LmrIOv0Y7jHFXU077c_Q2pUMRsJY2b9B5wzvKmSA79OcOHOhsT1DBQ4iQkvVL5cfK2fsp15OKJ0jZLveV9nNw8ACpUi5DTFWYfCrH2WDN06tPNq9uu1R5gjJyVPox--BUmq2uZpiHqBao1LIaIrxkrn3hGMt1Dc0-Rx-mYhiULk1WvUNno3IJ3j_PC_Tr6tvPy5v69sf198uvt7VuCMm1YZiBFpSLHvqWCc5H04pRKNwNDAsqtKGqazsATFVDjNGiZ0B7DKzhTd82F-jTlhui_30se8vZJg3OlU_7Y5K0bzuCO8ZXabtJdfQpRRhliHZW8VESLFc-8iA3PnLlIzc-xfbxueE4zGD-mV6AFMGXTQBlz5OFKJO2sGgwNhZO0nj7_4a_CC2nsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845105674</pqid></control><display><type>article</type><title>Selective expression of light-harvesting complexes alters phospholipid composition in the intracytoplasmic membrane and core complex of purple phototrophic bacteria</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Satoh, I. ; Gotou, K. ; Nagatsuma, S. ; Nagashima, K.V.P. ; Kobayashi, M. ; Yu, L.-J. ; Madigan, M.T. ; Kimura, Y. ; Wang-Otomo, Z.-Y.</creator><creatorcontrib>Satoh, I. ; Gotou, K. ; Nagatsuma, S. ; Nagashima, K.V.P. ; Kobayashi, M. ; Yu, L.-J. ; Madigan, M.T. ; Kimura, Y. ; Wang-Otomo, Z.-Y.</creatorcontrib><description>Phospholipid–protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1–reaction center core complexes (LH1–RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1–RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex–phospholipid interactions. •Removal of LH2 results in significant changes in phospholipid composition of ICM.•Substitution of LH1 alters phospholipid composition of ICM in the absence of LH2.•Selectively expressed LH1–RCs have different phospholipid compositions.•Effects of carotenoids on phospholipid composition appear to be species-dependent.</description><identifier>ISSN: 0005-2728</identifier><identifier>EISSN: 1879-2650</identifier><identifier>DOI: 10.1016/j.bbabio.2023.149001</identifier><identifier>PMID: 37527691</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Carotenoid ; Light-harvesting ; Membrane morphology ; Reaction center ; Rhodobacter sphaeroides</subject><ispartof>Biochimica et biophysica acta. Bioenergetics, 2023-11, Vol.1864 (4), p.149001-149001, Article 149001</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-d606ec92798e846977fd49f9a05b60929cd2a545ee02a31ddc986e280e6373843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0005272823000476$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37527691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Satoh, I.</creatorcontrib><creatorcontrib>Gotou, K.</creatorcontrib><creatorcontrib>Nagatsuma, S.</creatorcontrib><creatorcontrib>Nagashima, K.V.P.</creatorcontrib><creatorcontrib>Kobayashi, M.</creatorcontrib><creatorcontrib>Yu, L.-J.</creatorcontrib><creatorcontrib>Madigan, M.T.</creatorcontrib><creatorcontrib>Kimura, Y.</creatorcontrib><creatorcontrib>Wang-Otomo, Z.-Y.</creatorcontrib><title>Selective expression of light-harvesting complexes alters phospholipid composition in the intracytoplasmic membrane and core complex of purple phototrophic bacteria</title><title>Biochimica et biophysica acta. Bioenergetics</title><addtitle>Biochim Biophys Acta Bioenerg</addtitle><description>Phospholipid–protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1–reaction center core complexes (LH1–RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1–RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex–phospholipid interactions. •Removal of LH2 results in significant changes in phospholipid composition of ICM.•Substitution of LH1 alters phospholipid composition of ICM in the absence of LH2.•Selectively expressed LH1–RCs have different phospholipid compositions.•Effects of carotenoids on phospholipid composition appear to be species-dependent.</description><subject>Carotenoid</subject><subject>Light-harvesting</subject><subject>Membrane morphology</subject><subject>Reaction center</subject><subject>Rhodobacter sphaeroides</subject><issn>0005-2728</issn><issn>1879-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uFSEUx4mxsdfqGxgzSzdzBWYGho2JaWxr0sRFdU0YONPhhhkQuDft-_igMp3WpQtySPh_cPJD6APBe4IJ-3zYD4MarN9TTJs9aQXG5BXakZ6LmrIOv0Y7jHFXU077c_Q2pUMRsJY2b9B5wzvKmSA79OcOHOhsT1DBQ4iQkvVL5cfK2fsp15OKJ0jZLveV9nNw8ACpUi5DTFWYfCrH2WDN06tPNq9uu1R5gjJyVPox--BUmq2uZpiHqBao1LIaIrxkrn3hGMt1Dc0-Rx-mYhiULk1WvUNno3IJ3j_PC_Tr6tvPy5v69sf198uvt7VuCMm1YZiBFpSLHvqWCc5H04pRKNwNDAsqtKGqazsATFVDjNGiZ0B7DKzhTd82F-jTlhui_30se8vZJg3OlU_7Y5K0bzuCO8ZXabtJdfQpRRhliHZW8VESLFc-8iA3PnLlIzc-xfbxueE4zGD-mV6AFMGXTQBlz5OFKJO2sGgwNhZO0nj7_4a_CC2nsg</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Satoh, I.</creator><creator>Gotou, K.</creator><creator>Nagatsuma, S.</creator><creator>Nagashima, K.V.P.</creator><creator>Kobayashi, M.</creator><creator>Yu, L.-J.</creator><creator>Madigan, M.T.</creator><creator>Kimura, Y.</creator><creator>Wang-Otomo, Z.-Y.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231101</creationdate><title>Selective expression of light-harvesting complexes alters phospholipid composition in the intracytoplasmic membrane and core complex of purple phototrophic bacteria</title><author>Satoh, I. ; Gotou, K. ; Nagatsuma, S. ; Nagashima, K.V.P. ; Kobayashi, M. ; Yu, L.-J. ; Madigan, M.T. ; Kimura, Y. ; Wang-Otomo, Z.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d606ec92798e846977fd49f9a05b60929cd2a545ee02a31ddc986e280e6373843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carotenoid</topic><topic>Light-harvesting</topic><topic>Membrane morphology</topic><topic>Reaction center</topic><topic>Rhodobacter sphaeroides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satoh, I.</creatorcontrib><creatorcontrib>Gotou, K.</creatorcontrib><creatorcontrib>Nagatsuma, S.</creatorcontrib><creatorcontrib>Nagashima, K.V.P.</creatorcontrib><creatorcontrib>Kobayashi, M.</creatorcontrib><creatorcontrib>Yu, L.-J.</creatorcontrib><creatorcontrib>Madigan, M.T.</creatorcontrib><creatorcontrib>Kimura, Y.</creatorcontrib><creatorcontrib>Wang-Otomo, Z.-Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satoh, I.</au><au>Gotou, K.</au><au>Nagatsuma, S.</au><au>Nagashima, K.V.P.</au><au>Kobayashi, M.</au><au>Yu, L.-J.</au><au>Madigan, M.T.</au><au>Kimura, Y.</au><au>Wang-Otomo, Z.-Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective expression of light-harvesting complexes alters phospholipid composition in the intracytoplasmic membrane and core complex of purple phototrophic bacteria</atitle><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle><addtitle>Biochim Biophys Acta Bioenerg</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>1864</volume><issue>4</issue><spage>149001</spage><epage>149001</epage><pages>149001-149001</pages><artnum>149001</artnum><issn>0005-2728</issn><eissn>1879-2650</eissn><abstract>Phospholipid–protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1–reaction center core complexes (LH1–RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1–RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex–phospholipid interactions. •Removal of LH2 results in significant changes in phospholipid composition of ICM.•Substitution of LH1 alters phospholipid composition of ICM in the absence of LH2.•Selectively expressed LH1–RCs have different phospholipid compositions.•Effects of carotenoids on phospholipid composition appear to be species-dependent.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37527691</pmid><doi>10.1016/j.bbabio.2023.149001</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2728
ispartof Biochimica et biophysica acta. Bioenergetics, 2023-11, Vol.1864 (4), p.149001-149001, Article 149001
issn 0005-2728
1879-2650
language eng
recordid cdi_proquest_miscellaneous_2845105674
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Carotenoid
Light-harvesting
Membrane morphology
Reaction center
Rhodobacter sphaeroides
title Selective expression of light-harvesting complexes alters phospholipid composition in the intracytoplasmic membrane and core complex of purple phototrophic bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20expression%20of%20light-harvesting%20complexes%20alters%20phospholipid%20composition%20in%20the%20intracytoplasmic%20membrane%20and%20core%20complex%20of%20purple%20phototrophic%20bacteria&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Bioenergetics&rft.au=Satoh,%20I.&rft.date=2023-11-01&rft.volume=1864&rft.issue=4&rft.spage=149001&rft.epage=149001&rft.pages=149001-149001&rft.artnum=149001&rft.issn=0005-2728&rft.eissn=1879-2650&rft_id=info:doi/10.1016/j.bbabio.2023.149001&rft_dat=%3Cproquest_cross%3E2845105674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845105674&rft_id=info:pmid/37527691&rft_els_id=S0005272823000476&rfr_iscdi=true