The Effect of Si Addition on Crystallization Behavior of Amorphous Al-Y-Ni Alloy

This article reports the effect of silicon (Si) addition upon the crystallization behavior and mechanical properties of an amorphous AlYNi alloy. An amount of 1 at.% Si was added to a base alloy of Al^sub 85^Y^sub 5^Ni^sub 10^ either by substitution for yttrium (Y) to form Al^sub 85^Y^sub 4^Ni^sub 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2004-08, Vol.13 (4), p.504-508
1. Verfasser: Gogebakan, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue 4
container_start_page 504
container_title Journal of materials engineering and performance
container_volume 13
creator Gogebakan, M
description This article reports the effect of silicon (Si) addition upon the crystallization behavior and mechanical properties of an amorphous AlYNi alloy. An amount of 1 at.% Si was added to a base alloy of Al^sub 85^Y^sub 5^Ni^sub 10^ either by substitution for yttrium (Y) to form Al^sub 85^Y^sub 4^Ni^sub 10^Si^sub 1^, or by substitution for nickel (Ni) to form Al^sub 85^Y^sub 5^Ni^sub 9^Si^sub 1^. Differential scanning calorimetry (DSC) of all three alloys showed three exothermic peaks. Comparing the peak temperature for the first exothermic peak, a significant shift occurs toward the lower temperature. This indicates that 1 at.% substitutions of Y or Ni by Si decreases the stability of the amorphous phase. DSC study of these amorphous alloys during isothermal annealing at temperatures about 5-15 K lower than their first crystallization peaks showed that the formation of α-Al nanocrystals via primary crystallization occurred without an incubation period. The Avrami time exponent (n) of the primary crystallization from the amorphous structure was determined to be 1.00-1.16 using the Johnson-Mehl-Avrami (JMA) analysis. This suggested a diffusion-controlled growth without nucleation. However, a DSC study of these amorphous alloys during isothermal annealing at higher temperatures between 585 and 605 K showed a clear incubation period during the formation of the Al^sub 3^Ni and Al^sub 3^Y intermetallic phases. An n value of 3.00-3.45 was determined using JMA analysis. This suggested that the transformation reaction involved a decreasing nucleation rate and interface-controlled growth behavior. The tensile strength σ^sub f^ and Vickers hardness for these amorphous alloys are in the range 1050-1250 MPa and 380-398 diamond pyramid hardness number (1 diamond pyramid hardness number=1 kg/mm^sup 2^=9.8 MPa), respectively.[PUBLICATION ABSTRACT]
doi_str_mv 10.1361/10599490419171
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28450331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28450331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5eca483ce0990ea25f43cd4dd48e4bb1c0faf0fab4c0c556fcbcdd3361e5e543</originalsourceid><addsrcrecordid>eNpdkMFOwzAMhiMEEmNw5Vxx4JbhNE7XHsu0AdIESOzCqUrTRMuULSPpkMbTkzEuINmyZX-2fpuQawYjxgt2x0BUFVaArGJjdkIGTCBSBjmepjw1aeqKc3IR4woAxnmOA_K6WOpsaoxWfeZN9mazuutsb_0mSzYJ-9hL5-yX_Cnd66X8tD4c0Hrtw3bpdzGrHX2nz2nSOb-_JGdGuqivfuOQLGbTxeSRzl8enib1nKq8Ej0VWkksudJQVaBlLgxy1WHXYamxbZkCI03yFhUoIQqjWtV1PN2phRbIh-T2uHYb_MdOx75Z26i0c3Kjk6YmL1EA5yyBN__Ald-FTZLWlGNRFAIhT9DoCKngYwzaNNtg1zLsGwbN4bnN3-fyb0lra30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875665402</pqid></control><display><type>article</type><title>The Effect of Si Addition on Crystallization Behavior of Amorphous Al-Y-Ni Alloy</title><source>SpringerNature Journals</source><creator>Gogebakan, M</creator><creatorcontrib>Gogebakan, M</creatorcontrib><description>This article reports the effect of silicon (Si) addition upon the crystallization behavior and mechanical properties of an amorphous AlYNi alloy. An amount of 1 at.% Si was added to a base alloy of Al^sub 85^Y^sub 5^Ni^sub 10^ either by substitution for yttrium (Y) to form Al^sub 85^Y^sub 4^Ni^sub 10^Si^sub 1^, or by substitution for nickel (Ni) to form Al^sub 85^Y^sub 5^Ni^sub 9^Si^sub 1^. Differential scanning calorimetry (DSC) of all three alloys showed three exothermic peaks. Comparing the peak temperature for the first exothermic peak, a significant shift occurs toward the lower temperature. This indicates that 1 at.% substitutions of Y or Ni by Si decreases the stability of the amorphous phase. DSC study of these amorphous alloys during isothermal annealing at temperatures about 5-15 K lower than their first crystallization peaks showed that the formation of α-Al nanocrystals via primary crystallization occurred without an incubation period. The Avrami time exponent (n) of the primary crystallization from the amorphous structure was determined to be 1.00-1.16 using the Johnson-Mehl-Avrami (JMA) analysis. This suggested a diffusion-controlled growth without nucleation. However, a DSC study of these amorphous alloys during isothermal annealing at higher temperatures between 585 and 605 K showed a clear incubation period during the formation of the Al^sub 3^Ni and Al^sub 3^Y intermetallic phases. An n value of 3.00-3.45 was determined using JMA analysis. This suggested that the transformation reaction involved a decreasing nucleation rate and interface-controlled growth behavior. The tensile strength σ^sub f^ and Vickers hardness for these amorphous alloys are in the range 1050-1250 MPa and 380-398 diamond pyramid hardness number (1 diamond pyramid hardness number=1 kg/mm^sup 2^=9.8 MPa), respectively.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1361/10599490419171</identifier><identifier>CODEN: JMEPEG</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><ispartof>Journal of materials engineering and performance, 2004-08, Vol.13 (4), p.504-508</ispartof><rights>ASM International 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5eca483ce0990ea25f43cd4dd48e4bb1c0faf0fab4c0c556fcbcdd3361e5e543</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gogebakan, M</creatorcontrib><title>The Effect of Si Addition on Crystallization Behavior of Amorphous Al-Y-Ni Alloy</title><title>Journal of materials engineering and performance</title><description>This article reports the effect of silicon (Si) addition upon the crystallization behavior and mechanical properties of an amorphous AlYNi alloy. An amount of 1 at.% Si was added to a base alloy of Al^sub 85^Y^sub 5^Ni^sub 10^ either by substitution for yttrium (Y) to form Al^sub 85^Y^sub 4^Ni^sub 10^Si^sub 1^, or by substitution for nickel (Ni) to form Al^sub 85^Y^sub 5^Ni^sub 9^Si^sub 1^. Differential scanning calorimetry (DSC) of all three alloys showed three exothermic peaks. Comparing the peak temperature for the first exothermic peak, a significant shift occurs toward the lower temperature. This indicates that 1 at.% substitutions of Y or Ni by Si decreases the stability of the amorphous phase. DSC study of these amorphous alloys during isothermal annealing at temperatures about 5-15 K lower than their first crystallization peaks showed that the formation of α-Al nanocrystals via primary crystallization occurred without an incubation period. The Avrami time exponent (n) of the primary crystallization from the amorphous structure was determined to be 1.00-1.16 using the Johnson-Mehl-Avrami (JMA) analysis. This suggested a diffusion-controlled growth without nucleation. However, a DSC study of these amorphous alloys during isothermal annealing at higher temperatures between 585 and 605 K showed a clear incubation period during the formation of the Al^sub 3^Ni and Al^sub 3^Y intermetallic phases. An n value of 3.00-3.45 was determined using JMA analysis. This suggested that the transformation reaction involved a decreasing nucleation rate and interface-controlled growth behavior. The tensile strength σ^sub f^ and Vickers hardness for these amorphous alloys are in the range 1050-1250 MPa and 380-398 diamond pyramid hardness number (1 diamond pyramid hardness number=1 kg/mm^sup 2^=9.8 MPa), respectively.[PUBLICATION ABSTRACT]</description><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkMFOwzAMhiMEEmNw5Vxx4JbhNE7XHsu0AdIESOzCqUrTRMuULSPpkMbTkzEuINmyZX-2fpuQawYjxgt2x0BUFVaArGJjdkIGTCBSBjmepjw1aeqKc3IR4woAxnmOA_K6WOpsaoxWfeZN9mazuutsb_0mSzYJ-9hL5-yX_Cnd66X8tD4c0Hrtw3bpdzGrHX2nz2nSOb-_JGdGuqivfuOQLGbTxeSRzl8enib1nKq8Ej0VWkksudJQVaBlLgxy1WHXYamxbZkCI03yFhUoIQqjWtV1PN2phRbIh-T2uHYb_MdOx75Z26i0c3Kjk6YmL1EA5yyBN__Ald-FTZLWlGNRFAIhT9DoCKngYwzaNNtg1zLsGwbN4bnN3-fyb0lra30</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Gogebakan, M</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7QF</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20040801</creationdate><title>The Effect of Si Addition on Crystallization Behavior of Amorphous Al-Y-Ni Alloy</title><author>Gogebakan, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5eca483ce0990ea25f43cd4dd48e4bb1c0faf0fab4c0c556fcbcdd3361e5e543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogebakan, M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogebakan, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Si Addition on Crystallization Behavior of Amorphous Al-Y-Ni Alloy</atitle><jtitle>Journal of materials engineering and performance</jtitle><date>2004-08-01</date><risdate>2004</risdate><volume>13</volume><issue>4</issue><spage>504</spage><epage>508</epage><pages>504-508</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><coden>JMEPEG</coden><abstract>This article reports the effect of silicon (Si) addition upon the crystallization behavior and mechanical properties of an amorphous AlYNi alloy. An amount of 1 at.% Si was added to a base alloy of Al^sub 85^Y^sub 5^Ni^sub 10^ either by substitution for yttrium (Y) to form Al^sub 85^Y^sub 4^Ni^sub 10^Si^sub 1^, or by substitution for nickel (Ni) to form Al^sub 85^Y^sub 5^Ni^sub 9^Si^sub 1^. Differential scanning calorimetry (DSC) of all three alloys showed three exothermic peaks. Comparing the peak temperature for the first exothermic peak, a significant shift occurs toward the lower temperature. This indicates that 1 at.% substitutions of Y or Ni by Si decreases the stability of the amorphous phase. DSC study of these amorphous alloys during isothermal annealing at temperatures about 5-15 K lower than their first crystallization peaks showed that the formation of α-Al nanocrystals via primary crystallization occurred without an incubation period. The Avrami time exponent (n) of the primary crystallization from the amorphous structure was determined to be 1.00-1.16 using the Johnson-Mehl-Avrami (JMA) analysis. This suggested a diffusion-controlled growth without nucleation. However, a DSC study of these amorphous alloys during isothermal annealing at higher temperatures between 585 and 605 K showed a clear incubation period during the formation of the Al^sub 3^Ni and Al^sub 3^Y intermetallic phases. An n value of 3.00-3.45 was determined using JMA analysis. This suggested that the transformation reaction involved a decreasing nucleation rate and interface-controlled growth behavior. The tensile strength σ^sub f^ and Vickers hardness for these amorphous alloys are in the range 1050-1250 MPa and 380-398 diamond pyramid hardness number (1 diamond pyramid hardness number=1 kg/mm^sup 2^=9.8 MPa), respectively.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1361/10599490419171</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-9495
ispartof Journal of materials engineering and performance, 2004-08, Vol.13 (4), p.504-508
issn 1059-9495
1544-1024
language eng
recordid cdi_proquest_miscellaneous_28450331
source SpringerNature Journals
title The Effect of Si Addition on Crystallization Behavior of Amorphous Al-Y-Ni Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Si%20Addition%20on%20Crystallization%20Behavior%20of%20Amorphous%20Al-Y-Ni%20Alloy&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=Gogebakan,%20M&rft.date=2004-08-01&rft.volume=13&rft.issue=4&rft.spage=504&rft.epage=508&rft.pages=504-508&rft.issn=1059-9495&rft.eissn=1544-1024&rft.coden=JMEPEG&rft_id=info:doi/10.1361/10599490419171&rft_dat=%3Cproquest_cross%3E28450331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875665402&rft_id=info:pmid/&rfr_iscdi=true