Unsteady analysis and experimental verification of the aerodynamic vibration mechanism of HDD arms

The authors investigate the flow structure in 3.5-in hard disk drives with a rotation speed of 10033 rpm, especially the unsteady flow around actuator arms with and without a weight-saving hole, and clarify the unsteady flow in detail. In the method of approach utilized in this investigation, they u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2003-03, Vol.39 (2), p.819-825
Hauptverfasser: Tsuda, N., Kubotera, H., Tatewaki, M., Noda, S., Hashiguchi, M., Maruyama, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 2
container_start_page 819
container_title IEEE transactions on magnetics
container_volume 39
creator Tsuda, N.
Kubotera, H.
Tatewaki, M.
Noda, S.
Hashiguchi, M.
Maruyama, T.
description The authors investigate the flow structure in 3.5-in hard disk drives with a rotation speed of 10033 rpm, especially the unsteady flow around actuator arms with and without a weight-saving hole, and clarify the unsteady flow in detail. In the method of approach utilized in this investigation, they used: 1) a direct numerical simulation of the Navier-Stokes equations to analyze the flow field; 2) a laser Doppler velocimeter to measure the velocity field; and 3) a laser Doppler vibrometer to monitor unsteady displacement of the actuator arm. The authors find a three-dimensional spiral vortex in the wake region of the arm and the flow spilled from the weight-saving hole. These flows can be considered to be an excitation source for the actuator arm. The power spectrum of the arm torque generated by calculated wind disturbance agrees with that of measured wind disturbance. This verifies the existence of the predicted vortices and the flow spilled from the weight-saving hole.
doi_str_mv 10.1109/TMAG.2003.808931
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28447588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1190108</ieee_id><sourcerecordid>28447588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-ebc4a5420b8bad8206e834e7a06fbfcce03a61b54a53de3e8e27a13c8cfa5e293</originalsourceid><addsrcrecordid>eNqN0c1L5TAQAPAgu-Bb3fuClyK4nvqcNGmaHMVvcPGi5zBNpxjpxzPpE99_vykVBA_LnjJhfjMhM4z94rDmHMzZ45_zm3UBINYatBF8j624kTwHUOYbWwFwnRup5D77EeNLusqSw4rVT0OcCJtdhgN2u-hjCpqM3jcUfE_DhF32lsLWO5z8OGRjm03PlCGFsdkN2HuXvfk6LMme3DMOPvYzu728zDD08ZB9b7GL9PPjPGBP11ePF7f5_cPN3cX5fe4kL6acaiexlAXUusZGF6BIC0kVgmrr1jkCgYrXZUKiIUGaigq5cNq1WFJhxAE7Xfpuwvi6pTjZ3kdHXYcDjdtoDXBVGSNm-fufstBGK67gP6CUVal1gsdf4Mu4DWmi0WothVQVzAgW5MIYY6DWbtKMMewsBzsv0c5LtPMS7bLEVHLy0Rejw64NODgfP-ukKpSuRHJHi_NE9Jnm6c_p4b9MrqXl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884346708</pqid></control><display><type>article</type><title>Unsteady analysis and experimental verification of the aerodynamic vibration mechanism of HDD arms</title><source>IEEE Xplore</source><creator>Tsuda, N. ; Kubotera, H. ; Tatewaki, M. ; Noda, S. ; Hashiguchi, M. ; Maruyama, T.</creator><creatorcontrib>Tsuda, N. ; Kubotera, H. ; Tatewaki, M. ; Noda, S. ; Hashiguchi, M. ; Maruyama, T.</creatorcontrib><description>The authors investigate the flow structure in 3.5-in hard disk drives with a rotation speed of 10033 rpm, especially the unsteady flow around actuator arms with and without a weight-saving hole, and clarify the unsteady flow in detail. In the method of approach utilized in this investigation, they used: 1) a direct numerical simulation of the Navier-Stokes equations to analyze the flow field; 2) a laser Doppler velocimeter to measure the velocity field; and 3) a laser Doppler vibrometer to monitor unsteady displacement of the actuator arm. The authors find a three-dimensional spiral vortex in the wake region of the arm and the flow spilled from the weight-saving hole. These flows can be considered to be an excitation source for the actuator arm. The power spectrum of the arm torque generated by calculated wind disturbance agrees with that of measured wind disturbance. This verifies the existence of the predicted vortices and the flow spilled from the weight-saving hole.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2003.808931</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Aerodynamics ; Applied sciences ; Arm ; Computational fluid dynamics ; Disk drives ; Displacement measurement ; Disturbances ; Electronics ; Exact sciences and technology ; Fluid flow ; Fluid flow measurement ; Hard disks ; Magnetic and optical mass memories ; Magnetism ; Mathematical analysis ; Navier-Stokes equations ; Numerical simulation ; Other magnetic recording and storage devices (including tapes, disks, and drums) ; Storage and reproduction of information ; Unsteady ; Unsteady flow ; Velocity ; Velocity measurement ; Wind power generation</subject><ispartof>IEEE transactions on magnetics, 2003-03, Vol.39 (2), p.819-825</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-ebc4a5420b8bad8206e834e7a06fbfcce03a61b54a53de3e8e27a13c8cfa5e293</citedby><cites>FETCH-LOGICAL-c412t-ebc4a5420b8bad8206e834e7a06fbfcce03a61b54a53de3e8e27a13c8cfa5e293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1190108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23935,23936,25145,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1190108$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14626873$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsuda, N.</creatorcontrib><creatorcontrib>Kubotera, H.</creatorcontrib><creatorcontrib>Tatewaki, M.</creatorcontrib><creatorcontrib>Noda, S.</creatorcontrib><creatorcontrib>Hashiguchi, M.</creatorcontrib><creatorcontrib>Maruyama, T.</creatorcontrib><title>Unsteady analysis and experimental verification of the aerodynamic vibration mechanism of HDD arms</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The authors investigate the flow structure in 3.5-in hard disk drives with a rotation speed of 10033 rpm, especially the unsteady flow around actuator arms with and without a weight-saving hole, and clarify the unsteady flow in detail. In the method of approach utilized in this investigation, they used: 1) a direct numerical simulation of the Navier-Stokes equations to analyze the flow field; 2) a laser Doppler velocimeter to measure the velocity field; and 3) a laser Doppler vibrometer to monitor unsteady displacement of the actuator arm. The authors find a three-dimensional spiral vortex in the wake region of the arm and the flow spilled from the weight-saving hole. These flows can be considered to be an excitation source for the actuator arm. The power spectrum of the arm torque generated by calculated wind disturbance agrees with that of measured wind disturbance. This verifies the existence of the predicted vortices and the flow spilled from the weight-saving hole.</description><subject>Actuators</subject><subject>Aerodynamics</subject><subject>Applied sciences</subject><subject>Arm</subject><subject>Computational fluid dynamics</subject><subject>Disk drives</subject><subject>Displacement measurement</subject><subject>Disturbances</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluid flow measurement</subject><subject>Hard disks</subject><subject>Magnetic and optical mass memories</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>Numerical simulation</subject><subject>Other magnetic recording and storage devices (including tapes, disks, and drums)</subject><subject>Storage and reproduction of information</subject><subject>Unsteady</subject><subject>Unsteady flow</subject><subject>Velocity</subject><subject>Velocity measurement</subject><subject>Wind power generation</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0c1L5TAQAPAgu-Bb3fuClyK4nvqcNGmaHMVvcPGi5zBNpxjpxzPpE99_vykVBA_LnjJhfjMhM4z94rDmHMzZ45_zm3UBINYatBF8j624kTwHUOYbWwFwnRup5D77EeNLusqSw4rVT0OcCJtdhgN2u-hjCpqM3jcUfE_DhF32lsLWO5z8OGRjm03PlCGFsdkN2HuXvfk6LMme3DMOPvYzu728zDD08ZB9b7GL9PPjPGBP11ePF7f5_cPN3cX5fe4kL6acaiexlAXUusZGF6BIC0kVgmrr1jkCgYrXZUKiIUGaigq5cNq1WFJhxAE7Xfpuwvi6pTjZ3kdHXYcDjdtoDXBVGSNm-fufstBGK67gP6CUVal1gsdf4Mu4DWmi0WothVQVzAgW5MIYY6DWbtKMMewsBzsv0c5LtPMS7bLEVHLy0Rejw64NODgfP-ukKpSuRHJHi_NE9Jnm6c_p4b9MrqXl</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Tsuda, N.</creator><creator>Kubotera, H.</creator><creator>Tatewaki, M.</creator><creator>Noda, S.</creator><creator>Hashiguchi, M.</creator><creator>Maruyama, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030301</creationdate><title>Unsteady analysis and experimental verification of the aerodynamic vibration mechanism of HDD arms</title><author>Tsuda, N. ; Kubotera, H. ; Tatewaki, M. ; Noda, S. ; Hashiguchi, M. ; Maruyama, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-ebc4a5420b8bad8206e834e7a06fbfcce03a61b54a53de3e8e27a13c8cfa5e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Actuators</topic><topic>Aerodynamics</topic><topic>Applied sciences</topic><topic>Arm</topic><topic>Computational fluid dynamics</topic><topic>Disk drives</topic><topic>Displacement measurement</topic><topic>Disturbances</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluid flow measurement</topic><topic>Hard disks</topic><topic>Magnetic and optical mass memories</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>Numerical simulation</topic><topic>Other magnetic recording and storage devices (including tapes, disks, and drums)</topic><topic>Storage and reproduction of information</topic><topic>Unsteady</topic><topic>Unsteady flow</topic><topic>Velocity</topic><topic>Velocity measurement</topic><topic>Wind power generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsuda, N.</creatorcontrib><creatorcontrib>Kubotera, H.</creatorcontrib><creatorcontrib>Tatewaki, M.</creatorcontrib><creatorcontrib>Noda, S.</creatorcontrib><creatorcontrib>Hashiguchi, M.</creatorcontrib><creatorcontrib>Maruyama, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsuda, N.</au><au>Kubotera, H.</au><au>Tatewaki, M.</au><au>Noda, S.</au><au>Hashiguchi, M.</au><au>Maruyama, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady analysis and experimental verification of the aerodynamic vibration mechanism of HDD arms</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2003-03-01</date><risdate>2003</risdate><volume>39</volume><issue>2</issue><spage>819</spage><epage>825</epage><pages>819-825</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The authors investigate the flow structure in 3.5-in hard disk drives with a rotation speed of 10033 rpm, especially the unsteady flow around actuator arms with and without a weight-saving hole, and clarify the unsteady flow in detail. In the method of approach utilized in this investigation, they used: 1) a direct numerical simulation of the Navier-Stokes equations to analyze the flow field; 2) a laser Doppler velocimeter to measure the velocity field; and 3) a laser Doppler vibrometer to monitor unsteady displacement of the actuator arm. The authors find a three-dimensional spiral vortex in the wake region of the arm and the flow spilled from the weight-saving hole. These flows can be considered to be an excitation source for the actuator arm. The power spectrum of the arm torque generated by calculated wind disturbance agrees with that of measured wind disturbance. This verifies the existence of the predicted vortices and the flow spilled from the weight-saving hole.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2003.808931</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2003-03, Vol.39 (2), p.819-825
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_28447588
source IEEE Xplore
subjects Actuators
Aerodynamics
Applied sciences
Arm
Computational fluid dynamics
Disk drives
Displacement measurement
Disturbances
Electronics
Exact sciences and technology
Fluid flow
Fluid flow measurement
Hard disks
Magnetic and optical mass memories
Magnetism
Mathematical analysis
Navier-Stokes equations
Numerical simulation
Other magnetic recording and storage devices (including tapes, disks, and drums)
Storage and reproduction of information
Unsteady
Unsteady flow
Velocity
Velocity measurement
Wind power generation
title Unsteady analysis and experimental verification of the aerodynamic vibration mechanism of HDD arms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20analysis%20and%20experimental%20verification%20of%20the%20aerodynamic%20vibration%20mechanism%20of%20HDD%20arms&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Tsuda,%20N.&rft.date=2003-03-01&rft.volume=39&rft.issue=2&rft.spage=819&rft.epage=825&rft.pages=819-825&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2003.808931&rft_dat=%3Cproquest_RIE%3E28447588%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884346708&rft_id=info:pmid/&rft_ieee_id=1190108&rfr_iscdi=true