Lead-Free Textured Ceramics with Ultrahigh Piezoelectric Properties by Synergistic Design

Lead-free ceramics with superior piezoelectric performance are highly desirable in various electromechanical applications. Unfortunately, it is still challenging to achieve significantly enhanced piezoelectricity without sacrificing the Curie temperature (T c) in current BaTiO3-based ceramics. To ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-08, Vol.15 (31), p.37706-37716
Hauptverfasser: Kou, Qiangwei, Yang, Bin, Lei, Haobin, Yang, Shuai, Zhang, Zerui, Liu, Linjing, Xie, Hang, Sun, Yuan, Chang, Yunfei, Li, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37716
container_issue 31
container_start_page 37706
container_title ACS applied materials & interfaces
container_volume 15
creator Kou, Qiangwei
Yang, Bin
Lei, Haobin
Yang, Shuai
Zhang, Zerui
Liu, Linjing
Xie, Hang
Sun, Yuan
Chang, Yunfei
Li, Fei
description Lead-free ceramics with superior piezoelectric performance are highly desirable in various electromechanical applications. Unfortunately, it is still challenging to achieve significantly enhanced piezoelectricity without sacrificing the Curie temperature (T c) in current BaTiO3-based ceramics. To address this issue, a synergistic design strategy of integrating crystallographic texture, multiphase coexistence, and doping engineering is proposed here. Highly [001]c-textured (Ba0.95Ca0.05)­(Ti0.92Zr0.06Sn0.02)­O3 ceramics are synthesized through Li-related liquid-phase-assisted templated grain growth, with improved grain orientation quality (f of ∼96% and r of ∼0.16) achieved at substantially reduced texture temperatures. Encouragingly, ultrahigh comprehensive piezoelectric properties, i.e., piezoelectric coefficient d 33 of ∼820 pC N–1, electrostrain S max/E max of ∼2040 pm V–1, and figure of merit d 33 × g 33 of ∼23.5 × 10–12 m2 N–1, are simultaneously obtained without sacrificing T c, which are also about 2.3, 2.4, and 4.3 times as high as those of non-textured counterpart, respectively. On the basis of the experiments and theoretical modeling, the outstanding piezoelectric performance is attributed to more effective exploration of property anisotropy and easier polarization rotation/extension, owing to improved grain orientation quality, dissolution of templates into oriented grains, coexisting R + O + T phases, and domain miniaturization. This work provides important guidelines for developing novel ceramics with outstanding piezoelectric properties and can largely expand application fields of textured BaTiO3-based ceramics into high-performance and multilayer electronic devices.
doi_str_mv 10.1021/acsami.3c07637
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2844681827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844681827</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-735f11476adba83e8b1c8fb9857d5b6f297e44529719184557a4ef1da417b24a3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRrFavHiVHEVL3M7s9SrUqFCzYHjyFzWbSbslH3U3Q-utdSe3N0wzM874wD0JXBI8IpuROG68rO2IGy4TJI3RGxpzHigp6fNg5H6Bz7zcYJ4xicYoGTArKaMLO0PsMdB5PHUC0gK-2c5BHE3Ch0_jo07braFm2Tq_tah3NLXw3UIJpnTXR3DVbcK0FH2W76G1Xg1tZ34bLA3i7qi_QSaFLD5f7OUTL6eNi8hzPXp9eJvezWDOG21gyURDCZaLzTCsGKiNGFdlYCZmLLCnoWALnIgwyJooLITWHguSaE5lRrtkQ3fS9W9d8dODbtLLeQFnqGprOp1RxniiiqAzoqEeNa7x3UKRbZyvtdinB6a_OtNeZ7nWGwPW-u8sqyA_4n78A3PZACKabpnN1ePW_th-bmn-1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844681827</pqid></control><display><type>article</type><title>Lead-Free Textured Ceramics with Ultrahigh Piezoelectric Properties by Synergistic Design</title><source>ACS Publications</source><creator>Kou, Qiangwei ; Yang, Bin ; Lei, Haobin ; Yang, Shuai ; Zhang, Zerui ; Liu, Linjing ; Xie, Hang ; Sun, Yuan ; Chang, Yunfei ; Li, Fei</creator><creatorcontrib>Kou, Qiangwei ; Yang, Bin ; Lei, Haobin ; Yang, Shuai ; Zhang, Zerui ; Liu, Linjing ; Xie, Hang ; Sun, Yuan ; Chang, Yunfei ; Li, Fei</creatorcontrib><description>Lead-free ceramics with superior piezoelectric performance are highly desirable in various electromechanical applications. Unfortunately, it is still challenging to achieve significantly enhanced piezoelectricity without sacrificing the Curie temperature (T c) in current BaTiO3-based ceramics. To address this issue, a synergistic design strategy of integrating crystallographic texture, multiphase coexistence, and doping engineering is proposed here. Highly [001]c-textured (Ba0.95Ca0.05)­(Ti0.92Zr0.06Sn0.02)­O3 ceramics are synthesized through Li-related liquid-phase-assisted templated grain growth, with improved grain orientation quality (f of ∼96% and r of ∼0.16) achieved at substantially reduced texture temperatures. Encouragingly, ultrahigh comprehensive piezoelectric properties, i.e., piezoelectric coefficient d 33 of ∼820 pC N–1, electrostrain S max/E max of ∼2040 pm V–1, and figure of merit d 33 × g 33 of ∼23.5 × 10–12 m2 N–1, are simultaneously obtained without sacrificing T c, which are also about 2.3, 2.4, and 4.3 times as high as those of non-textured counterpart, respectively. On the basis of the experiments and theoretical modeling, the outstanding piezoelectric performance is attributed to more effective exploration of property anisotropy and easier polarization rotation/extension, owing to improved grain orientation quality, dissolution of templates into oriented grains, coexisting R + O + T phases, and domain miniaturization. This work provides important guidelines for developing novel ceramics with outstanding piezoelectric properties and can largely expand application fields of textured BaTiO3-based ceramics into high-performance and multilayer electronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c07637</identifier><identifier>PMID: 37523263</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2023-08, Vol.15 (31), p.37706-37716</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-735f11476adba83e8b1c8fb9857d5b6f297e44529719184557a4ef1da417b24a3</citedby><cites>FETCH-LOGICAL-a330t-735f11476adba83e8b1c8fb9857d5b6f297e44529719184557a4ef1da417b24a3</cites><orcidid>0000-0003-2830-5730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c07637$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c07637$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37523263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kou, Qiangwei</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Lei, Haobin</creatorcontrib><creatorcontrib>Yang, Shuai</creatorcontrib><creatorcontrib>Zhang, Zerui</creatorcontrib><creatorcontrib>Liu, Linjing</creatorcontrib><creatorcontrib>Xie, Hang</creatorcontrib><creatorcontrib>Sun, Yuan</creatorcontrib><creatorcontrib>Chang, Yunfei</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><title>Lead-Free Textured Ceramics with Ultrahigh Piezoelectric Properties by Synergistic Design</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Lead-free ceramics with superior piezoelectric performance are highly desirable in various electromechanical applications. Unfortunately, it is still challenging to achieve significantly enhanced piezoelectricity without sacrificing the Curie temperature (T c) in current BaTiO3-based ceramics. To address this issue, a synergistic design strategy of integrating crystallographic texture, multiphase coexistence, and doping engineering is proposed here. Highly [001]c-textured (Ba0.95Ca0.05)­(Ti0.92Zr0.06Sn0.02)­O3 ceramics are synthesized through Li-related liquid-phase-assisted templated grain growth, with improved grain orientation quality (f of ∼96% and r of ∼0.16) achieved at substantially reduced texture temperatures. Encouragingly, ultrahigh comprehensive piezoelectric properties, i.e., piezoelectric coefficient d 33 of ∼820 pC N–1, electrostrain S max/E max of ∼2040 pm V–1, and figure of merit d 33 × g 33 of ∼23.5 × 10–12 m2 N–1, are simultaneously obtained without sacrificing T c, which are also about 2.3, 2.4, and 4.3 times as high as those of non-textured counterpart, respectively. On the basis of the experiments and theoretical modeling, the outstanding piezoelectric performance is attributed to more effective exploration of property anisotropy and easier polarization rotation/extension, owing to improved grain orientation quality, dissolution of templates into oriented grains, coexisting R + O + T phases, and domain miniaturization. This work provides important guidelines for developing novel ceramics with outstanding piezoelectric properties and can largely expand application fields of textured BaTiO3-based ceramics into high-performance and multilayer electronic devices.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRrFavHiVHEVL3M7s9SrUqFCzYHjyFzWbSbslH3U3Q-utdSe3N0wzM874wD0JXBI8IpuROG68rO2IGy4TJI3RGxpzHigp6fNg5H6Bz7zcYJ4xicYoGTArKaMLO0PsMdB5PHUC0gK-2c5BHE3Ch0_jo07braFm2Tq_tah3NLXw3UIJpnTXR3DVbcK0FH2W76G1Xg1tZ34bLA3i7qi_QSaFLD5f7OUTL6eNi8hzPXp9eJvezWDOG21gyURDCZaLzTCsGKiNGFdlYCZmLLCnoWALnIgwyJooLITWHguSaE5lRrtkQ3fS9W9d8dODbtLLeQFnqGprOp1RxniiiqAzoqEeNa7x3UKRbZyvtdinB6a_OtNeZ7nWGwPW-u8sqyA_4n78A3PZACKabpnN1ePW_th-bmn-1</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Kou, Qiangwei</creator><creator>Yang, Bin</creator><creator>Lei, Haobin</creator><creator>Yang, Shuai</creator><creator>Zhang, Zerui</creator><creator>Liu, Linjing</creator><creator>Xie, Hang</creator><creator>Sun, Yuan</creator><creator>Chang, Yunfei</creator><creator>Li, Fei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2830-5730</orcidid></search><sort><creationdate>20230809</creationdate><title>Lead-Free Textured Ceramics with Ultrahigh Piezoelectric Properties by Synergistic Design</title><author>Kou, Qiangwei ; Yang, Bin ; Lei, Haobin ; Yang, Shuai ; Zhang, Zerui ; Liu, Linjing ; Xie, Hang ; Sun, Yuan ; Chang, Yunfei ; Li, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-735f11476adba83e8b1c8fb9857d5b6f297e44529719184557a4ef1da417b24a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Qiangwei</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Lei, Haobin</creatorcontrib><creatorcontrib>Yang, Shuai</creatorcontrib><creatorcontrib>Zhang, Zerui</creatorcontrib><creatorcontrib>Liu, Linjing</creatorcontrib><creatorcontrib>Xie, Hang</creatorcontrib><creatorcontrib>Sun, Yuan</creatorcontrib><creatorcontrib>Chang, Yunfei</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Qiangwei</au><au>Yang, Bin</au><au>Lei, Haobin</au><au>Yang, Shuai</au><au>Zhang, Zerui</au><au>Liu, Linjing</au><au>Xie, Hang</au><au>Sun, Yuan</au><au>Chang, Yunfei</au><au>Li, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lead-Free Textured Ceramics with Ultrahigh Piezoelectric Properties by Synergistic Design</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>15</volume><issue>31</issue><spage>37706</spage><epage>37716</epage><pages>37706-37716</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Lead-free ceramics with superior piezoelectric performance are highly desirable in various electromechanical applications. Unfortunately, it is still challenging to achieve significantly enhanced piezoelectricity without sacrificing the Curie temperature (T c) in current BaTiO3-based ceramics. To address this issue, a synergistic design strategy of integrating crystallographic texture, multiphase coexistence, and doping engineering is proposed here. Highly [001]c-textured (Ba0.95Ca0.05)­(Ti0.92Zr0.06Sn0.02)­O3 ceramics are synthesized through Li-related liquid-phase-assisted templated grain growth, with improved grain orientation quality (f of ∼96% and r of ∼0.16) achieved at substantially reduced texture temperatures. Encouragingly, ultrahigh comprehensive piezoelectric properties, i.e., piezoelectric coefficient d 33 of ∼820 pC N–1, electrostrain S max/E max of ∼2040 pm V–1, and figure of merit d 33 × g 33 of ∼23.5 × 10–12 m2 N–1, are simultaneously obtained without sacrificing T c, which are also about 2.3, 2.4, and 4.3 times as high as those of non-textured counterpart, respectively. On the basis of the experiments and theoretical modeling, the outstanding piezoelectric performance is attributed to more effective exploration of property anisotropy and easier polarization rotation/extension, owing to improved grain orientation quality, dissolution of templates into oriented grains, coexisting R + O + T phases, and domain miniaturization. This work provides important guidelines for developing novel ceramics with outstanding piezoelectric properties and can largely expand application fields of textured BaTiO3-based ceramics into high-performance and multilayer electronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37523263</pmid><doi>10.1021/acsami.3c07637</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2830-5730</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-08, Vol.15 (31), p.37706-37716
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2844681827
source ACS Publications
subjects Functional Inorganic Materials and Devices
title Lead-Free Textured Ceramics with Ultrahigh Piezoelectric Properties by Synergistic Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lead-Free%20Textured%20Ceramics%20with%20Ultrahigh%20Piezoelectric%20Properties%20by%20Synergistic%20Design&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kou,%20Qiangwei&rft.date=2023-08-09&rft.volume=15&rft.issue=31&rft.spage=37706&rft.epage=37716&rft.pages=37706-37716&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c07637&rft_dat=%3Cproquest_cross%3E2844681827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844681827&rft_id=info:pmid/37523263&rfr_iscdi=true