Three-dimensional current density distribution simulations for a resistive patterned wafer

A combined boundary element method (BEM)-finite element method (FEM) numerical approach is used for the simulation of current density and layer thickness distributions in a wafer plating reactor. The current and potential distribution effects due to the electrolyte resistivity are modeled with BEM,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2004, Vol.151 (9), p.D78-D86
Hauptverfasser: PURCAR, M, VAN DEN BOSSCHE, B, BORTELS, L, DECONINCK, J, NELISSEN, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page D86
container_issue 9
container_start_page D78
container_title Journal of the Electrochemical Society
container_volume 151
creator PURCAR, M
VAN DEN BOSSCHE, B
BORTELS, L
DECONINCK, J
NELISSEN, G
description A combined boundary element method (BEM)-finite element method (FEM) numerical approach is used for the simulation of current density and layer thickness distributions in a wafer plating reactor. The current and potential distribution effects due to the electrolyte resistivity are modeled with BEM, while the transient internal resistive 'terminal' effect of the wafer is modeled using FEM. A nonlinear Butler-Volmer type overpotential relation is considered to describe cathode kinetics. The declining internal wafer resistivity that is due to the growth of the initial copper seed layer, is modeled over a number of discrete time steps. Different contacting methods (4 or 8 contact points, ring contact) are investigated, and their terminal effect time is compared. The wafer consists of a ring-shaped current thief, with adjacent photoresist area's and a central electroactive patterned zone.
doi_str_mv 10.1149/1.1772782
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28445899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28445899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-53e6505a2de9ea4a6b75c7b158e33ba8b2df3ee4235bcd16de26713a06012603</originalsourceid><addsrcrecordid>eNpFkDlPAzEQhS0EEuEo-AduQKLY4PG5W6KIS4pEk4pm5bVnhdEewfaC8u_ZKJGo5s3M917xCLkBtgSQ1QMswRhuSn5CFlBJVRgAOCULxkAUUis4Jxcpfc0rlNIsyMfmMyIWPvQ4pDAOtqNuihGHTP3-knfUh5RjaKY8v2kK_dTZvUy0HSO1NGKagfCDdGtzxjigp7-2xXhFzlrbJbw-zkuyeX7arF6L9fvL2-pxXThelrlQArViynKPFVppdWOUMw2oEoVobNlw3wpEyYVqnAftkWsDwjLNgGsmLsndIXYbx-8JU677kBx2nR1wnFLNSylVWVUzeH8AXRxTitjW2xh6G3c1sHpfXg31sbyZvT2G2uRs10Y7uJD-DRqEYFqKP_9fb94</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28445899</pqid></control><display><type>article</type><title>Three-dimensional current density distribution simulations for a resistive patterned wafer</title><source>IOP Publishing Journals</source><creator>PURCAR, M ; VAN DEN BOSSCHE, B ; BORTELS, L ; DECONINCK, J ; NELISSEN, G</creator><creatorcontrib>PURCAR, M ; VAN DEN BOSSCHE, B ; BORTELS, L ; DECONINCK, J ; NELISSEN, G</creatorcontrib><description>A combined boundary element method (BEM)-finite element method (FEM) numerical approach is used for the simulation of current density and layer thickness distributions in a wafer plating reactor. The current and potential distribution effects due to the electrolyte resistivity are modeled with BEM, while the transient internal resistive 'terminal' effect of the wafer is modeled using FEM. A nonlinear Butler-Volmer type overpotential relation is considered to describe cathode kinetics. The declining internal wafer resistivity that is due to the growth of the initial copper seed layer, is modeled over a number of discrete time steps. Different contacting methods (4 or 8 contact points, ring contact) are investigated, and their terminal effect time is compared. The wafer consists of a ring-shaped current thief, with adjacent photoresist area's and a central electroactive patterned zone.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.1772782</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductivity phenomena in semiconductors and insulators ; Electronic transport in condensed matter ; Exact sciences and technology ; General theory, scattering mechanisms ; General theory, scatteringmechanisms ; Physics</subject><ispartof>Journal of the Electrochemical Society, 2004, Vol.151 (9), p.D78-D86</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-53e6505a2de9ea4a6b75c7b158e33ba8b2df3ee4235bcd16de26713a06012603</citedby><cites>FETCH-LOGICAL-c288t-53e6505a2de9ea4a6b75c7b158e33ba8b2df3ee4235bcd16de26713a06012603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16133064$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PURCAR, M</creatorcontrib><creatorcontrib>VAN DEN BOSSCHE, B</creatorcontrib><creatorcontrib>BORTELS, L</creatorcontrib><creatorcontrib>DECONINCK, J</creatorcontrib><creatorcontrib>NELISSEN, G</creatorcontrib><title>Three-dimensional current density distribution simulations for a resistive patterned wafer</title><title>Journal of the Electrochemical Society</title><description>A combined boundary element method (BEM)-finite element method (FEM) numerical approach is used for the simulation of current density and layer thickness distributions in a wafer plating reactor. The current and potential distribution effects due to the electrolyte resistivity are modeled with BEM, while the transient internal resistive 'terminal' effect of the wafer is modeled using FEM. A nonlinear Butler-Volmer type overpotential relation is considered to describe cathode kinetics. The declining internal wafer resistivity that is due to the growth of the initial copper seed layer, is modeled over a number of discrete time steps. Different contacting methods (4 or 8 contact points, ring contact) are investigated, and their terminal effect time is compared. The wafer consists of a ring-shaped current thief, with adjacent photoresist area's and a central electroactive patterned zone.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>Electronic transport in condensed matter</subject><subject>Exact sciences and technology</subject><subject>General theory, scattering mechanisms</subject><subject>General theory, scatteringmechanisms</subject><subject>Physics</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkDlPAzEQhS0EEuEo-AduQKLY4PG5W6KIS4pEk4pm5bVnhdEewfaC8u_ZKJGo5s3M917xCLkBtgSQ1QMswRhuSn5CFlBJVRgAOCULxkAUUis4Jxcpfc0rlNIsyMfmMyIWPvQ4pDAOtqNuihGHTP3-knfUh5RjaKY8v2kK_dTZvUy0HSO1NGKagfCDdGtzxjigp7-2xXhFzlrbJbw-zkuyeX7arF6L9fvL2-pxXThelrlQArViynKPFVppdWOUMw2oEoVobNlw3wpEyYVqnAftkWsDwjLNgGsmLsndIXYbx-8JU677kBx2nR1wnFLNSylVWVUzeH8AXRxTitjW2xh6G3c1sHpfXg31sbyZvT2G2uRs10Y7uJD-DRqEYFqKP_9fb94</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>PURCAR, M</creator><creator>VAN DEN BOSSCHE, B</creator><creator>BORTELS, L</creator><creator>DECONINCK, J</creator><creator>NELISSEN, G</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2004</creationdate><title>Three-dimensional current density distribution simulations for a resistive patterned wafer</title><author>PURCAR, M ; VAN DEN BOSSCHE, B ; BORTELS, L ; DECONINCK, J ; NELISSEN, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-53e6505a2de9ea4a6b75c7b158e33ba8b2df3ee4235bcd16de26713a06012603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>Electronic transport in condensed matter</topic><topic>Exact sciences and technology</topic><topic>General theory, scattering mechanisms</topic><topic>General theory, scatteringmechanisms</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PURCAR, M</creatorcontrib><creatorcontrib>VAN DEN BOSSCHE, B</creatorcontrib><creatorcontrib>BORTELS, L</creatorcontrib><creatorcontrib>DECONINCK, J</creatorcontrib><creatorcontrib>NELISSEN, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PURCAR, M</au><au>VAN DEN BOSSCHE, B</au><au>BORTELS, L</au><au>DECONINCK, J</au><au>NELISSEN, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional current density distribution simulations for a resistive patterned wafer</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2004</date><risdate>2004</risdate><volume>151</volume><issue>9</issue><spage>D78</spage><epage>D86</epage><pages>D78-D86</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>A combined boundary element method (BEM)-finite element method (FEM) numerical approach is used for the simulation of current density and layer thickness distributions in a wafer plating reactor. The current and potential distribution effects due to the electrolyte resistivity are modeled with BEM, while the transient internal resistive 'terminal' effect of the wafer is modeled using FEM. A nonlinear Butler-Volmer type overpotential relation is considered to describe cathode kinetics. The declining internal wafer resistivity that is due to the growth of the initial copper seed layer, is modeled over a number of discrete time steps. Different contacting methods (4 or 8 contact points, ring contact) are investigated, and their terminal effect time is compared. The wafer consists of a ring-shaped current thief, with adjacent photoresist area's and a central electroactive patterned zone.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.1772782</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2004, Vol.151 (9), p.D78-D86
issn 0013-4651
1945-7111
language eng
recordid cdi_proquest_miscellaneous_28445899
source IOP Publishing Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Conductivity phenomena in semiconductors and insulators
Electronic transport in condensed matter
Exact sciences and technology
General theory, scattering mechanisms
General theory, scatteringmechanisms
Physics
title Three-dimensional current density distribution simulations for a resistive patterned wafer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20current%20density%20distribution%20simulations%20for%20a%20resistive%20patterned%20wafer&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=PURCAR,%20M&rft.date=2004&rft.volume=151&rft.issue=9&rft.spage=D78&rft.epage=D86&rft.pages=D78-D86&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.1772782&rft_dat=%3Cproquest_cross%3E28445899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28445899&rft_id=info:pmid/&rfr_iscdi=true