α- and β-tubulin C-terminal tails with distinct modifications are crucial for ciliary motility and assembly

α- and β-tubulin have an unstructured glutamate-rich region at their C-terminal tails (CTT). The function of this region in cilia/flagella is still unclear, except that glutamates in CTT act as the sites for posttranslational modifications that affect ciliary motility. A unicellular alga Chlamydomon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2023-08, Vol.136 (16)
Hauptverfasser: Kubo, Tomohiro, Tani, Yuma, Yanagisawa, Haru-Aki, Kikkawa, Masahide, Oda, Toshiyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:α- and β-tubulin have an unstructured glutamate-rich region at their C-terminal tails (CTT). The function of this region in cilia/flagella is still unclear, except that glutamates in CTT act as the sites for posttranslational modifications that affect ciliary motility. A unicellular alga Chlamydomonas possesses only two a-tubulin genes and two b-tubulin genes, each pair encoding an identical protein. This simple gene organization may enable a complete replacement of the wild-type tubulin with its mutated version. Here, using CRISPR/Cas9, we generated mutants expressing tubulins with modified CTTs. We found that the mutant whose four glutamate residues in the α-tubulin CTT have been replaced by alanine almost completely lacked polyglutamylated tubulin and displayed paralyzed cilia. In contrast, the mutant lacking the glutamate-rich region of the β-tubulin CTT assembled short cilia without the central apparatus. This phenotype is similar to the mutants harboring a mutation in a subunit of katanin, whose function has been shown to depend on the b-tubulin CTT. Therefore, our study reveals distinct and important roles of α- and β-tubulin CTT in the formation and function of cilia.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.261070