Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser

The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Journal of Quantum Electronics 1996-06, Vol.32 (6), p.896-904
Hauptverfasser: Knippels, G.M.H., van de Meer, A.F.G., Mols, R.F.X.A.M., Oepts, D., van Amersfoort, P.W., Jaroszynski, D.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 904
container_issue 6
container_start_page 896
container_title IEEE Journal of Quantum Electronics
container_volume 32
creator Knippels, G.M.H.
van de Meer, A.F.G.
Mols, R.F.X.A.M.
Oepts, D.
van Amersfoort, P.W.
Jaroszynski, D.A.
description The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator.
doi_str_mv 10.1109/3.502366
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28439508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>502366</ieee_id><sourcerecordid>28439508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7e39571547d8a6bdb9c13643bf14844558328a267837f5ac25830b96a8b50eba3</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxYMouK6CZ08RRLx0TZq2SY-y-LGw4EXPIU0nbCSb1iQ9-N-bpcuehpn5vcfMQ-iWkhWlpH1mq5qUrGnO0ILWtSgop-wcLQihomhpyy_RVYw_ua0qQRbIbbxxE3gNeDBY4ZhgLJIaIUCPJ99PTqUhYGPB9XjwOO0yOCarlcPj5CLguMv0LDYqFNaboA5iEwAKcKBTyDqnIoRrdGFU1twc6xJ9v71-rT-K7ef7Zv2yLTRjJBUcWFtzWle8F6rp-q7VlDUV6wytRFXlr1gpVNlwwbiplS7zgHRto0RXE-gUW6L72XeIycqobQK904P3-RhZ1qzhPDOPMzOG4XeCmOTeRg3OKQ_DFGUpqnwFERl8mkEdhhgDGDkGu1fhT1IiD5FLJufIM_pw9FQxB5SD8NrGE88o4bxhGbubMQsAp-3R4x_Bl4df</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28439508</pqid></control><display><type>article</type><title>Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser</title><source>IEEE Electronic Library (IEL)</source><creator>Knippels, G.M.H. ; van de Meer, A.F.G. ; Mols, R.F.X.A.M. ; Oepts, D. ; van Amersfoort, P.W. ; Jaroszynski, D.A.</creator><creatorcontrib>Knippels, G.M.H. ; van de Meer, A.F.G. ; Mols, R.F.X.A.M. ; Oepts, D. ; van Amersfoort, P.W. ; Jaroszynski, D.A.</creatorcontrib><description>The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/3.502366</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Autocorrelation ; BEAM SHAPING ; ELECTROMAGNETIC PULSES ; Electromagnetism; electron and ion optics ; Electron optics ; ENGINEERING NOT INCLUDED IN OTHER CATEGORIES ; Exact sciences and technology ; FREE ELECTRON LASERS ; Fundamental areas of phenomenology (including applications) ; LASER CAVITIES ; MAGNETIC FIELDS ; Optical pulse shaping ; Optical pulses ; Optical saturation ; Physics ; Pulse measurements ; Radiation by moving charges ; Shape measurement ; Undulators ; Wavelength measurement ; WIGGLER MAGNETS</subject><ispartof>IEEE Journal of Quantum Electronics, 1996-06, Vol.32 (6), p.896-904</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7e39571547d8a6bdb9c13643bf14844558328a267837f5ac25830b96a8b50eba3</citedby><cites>FETCH-LOGICAL-c330t-7e39571547d8a6bdb9c13643bf14844558328a267837f5ac25830b96a8b50eba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/502366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/502366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3107763$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/253677$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Knippels, G.M.H.</creatorcontrib><creatorcontrib>van de Meer, A.F.G.</creatorcontrib><creatorcontrib>Mols, R.F.X.A.M.</creatorcontrib><creatorcontrib>Oepts, D.</creatorcontrib><creatorcontrib>van Amersfoort, P.W.</creatorcontrib><creatorcontrib>Jaroszynski, D.A.</creatorcontrib><title>Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser</title><title>IEEE Journal of Quantum Electronics</title><addtitle>JQE</addtitle><description>The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator.</description><subject>Autocorrelation</subject><subject>BEAM SHAPING</subject><subject>ELECTROMAGNETIC PULSES</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Electron optics</subject><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</subject><subject>Exact sciences and technology</subject><subject>FREE ELECTRON LASERS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>LASER CAVITIES</subject><subject>MAGNETIC FIELDS</subject><subject>Optical pulse shaping</subject><subject>Optical pulses</subject><subject>Optical saturation</subject><subject>Physics</subject><subject>Pulse measurements</subject><subject>Radiation by moving charges</subject><subject>Shape measurement</subject><subject>Undulators</subject><subject>Wavelength measurement</subject><subject>WIGGLER MAGNETS</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LxDAQxYMouK6CZ08RRLx0TZq2SY-y-LGw4EXPIU0nbCSb1iQ9-N-bpcuehpn5vcfMQ-iWkhWlpH1mq5qUrGnO0ILWtSgop-wcLQihomhpyy_RVYw_ua0qQRbIbbxxE3gNeDBY4ZhgLJIaIUCPJ99PTqUhYGPB9XjwOO0yOCarlcPj5CLguMv0LDYqFNaboA5iEwAKcKBTyDqnIoRrdGFU1twc6xJ9v71-rT-K7ef7Zv2yLTRjJBUcWFtzWle8F6rp-q7VlDUV6wytRFXlr1gpVNlwwbiplS7zgHRto0RXE-gUW6L72XeIycqobQK904P3-RhZ1qzhPDOPMzOG4XeCmOTeRg3OKQ_DFGUpqnwFERl8mkEdhhgDGDkGu1fhT1IiD5FLJufIM_pw9FQxB5SD8NrGE88o4bxhGbubMQsAp-3R4x_Bl4df</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Knippels, G.M.H.</creator><creator>van de Meer, A.F.G.</creator><creator>Mols, R.F.X.A.M.</creator><creator>Oepts, D.</creator><creator>van Amersfoort, P.W.</creator><creator>Jaroszynski, D.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19960601</creationdate><title>Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser</title><author>Knippels, G.M.H. ; van de Meer, A.F.G. ; Mols, R.F.X.A.M. ; Oepts, D. ; van Amersfoort, P.W. ; Jaroszynski, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7e39571547d8a6bdb9c13643bf14844558328a267837f5ac25830b96a8b50eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Autocorrelation</topic><topic>BEAM SHAPING</topic><topic>ELECTROMAGNETIC PULSES</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Electron optics</topic><topic>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</topic><topic>Exact sciences and technology</topic><topic>FREE ELECTRON LASERS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>LASER CAVITIES</topic><topic>MAGNETIC FIELDS</topic><topic>Optical pulse shaping</topic><topic>Optical pulses</topic><topic>Optical saturation</topic><topic>Physics</topic><topic>Pulse measurements</topic><topic>Radiation by moving charges</topic><topic>Shape measurement</topic><topic>Undulators</topic><topic>Wavelength measurement</topic><topic>WIGGLER MAGNETS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knippels, G.M.H.</creatorcontrib><creatorcontrib>van de Meer, A.F.G.</creatorcontrib><creatorcontrib>Mols, R.F.X.A.M.</creatorcontrib><creatorcontrib>Oepts, D.</creatorcontrib><creatorcontrib>van Amersfoort, P.W.</creatorcontrib><creatorcontrib>Jaroszynski, D.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE Journal of Quantum Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knippels, G.M.H.</au><au>van de Meer, A.F.G.</au><au>Mols, R.F.X.A.M.</au><au>Oepts, D.</au><au>van Amersfoort, P.W.</au><au>Jaroszynski, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser</atitle><jtitle>IEEE Journal of Quantum Electronics</jtitle><stitle>JQE</stitle><date>1996-06-01</date><risdate>1996</risdate><volume>32</volume><issue>6</issue><spage>896</spage><epage>904</epage><pages>896-904</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/3.502366</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE Journal of Quantum Electronics, 1996-06, Vol.32 (6), p.896-904
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_miscellaneous_28439508
source IEEE Electronic Library (IEL)
subjects Autocorrelation
BEAM SHAPING
ELECTROMAGNETIC PULSES
Electromagnetism
electron and ion optics
Electron optics
ENGINEERING NOT INCLUDED IN OTHER CATEGORIES
Exact sciences and technology
FREE ELECTRON LASERS
Fundamental areas of phenomenology (including applications)
LASER CAVITIES
MAGNETIC FIELDS
Optical pulse shaping
Optical pulses
Optical saturation
Physics
Pulse measurements
Radiation by moving charges
Shape measurement
Undulators
Wavelength measurement
WIGGLER MAGNETS
title Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20a%20step-tapered%20undulator%20field%20on%20the%20optical%20pulse%20shape%20of%20a%20far-infrared%20free-electron%20laser&rft.jtitle=IEEE%20Journal%20of%20Quantum%20Electronics&rft.au=Knippels,%20G.M.H.&rft.date=1996-06-01&rft.volume=32&rft.issue=6&rft.spage=896&rft.epage=904&rft.pages=896-904&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/3.502366&rft_dat=%3Cproquest_RIE%3E28439508%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28439508&rft_id=info:pmid/&rft_ieee_id=502366&rfr_iscdi=true