Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser
The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses....
Gespeichert in:
Veröffentlicht in: | IEEE Journal of Quantum Electronics 1996-06, Vol.32 (6), p.896-904 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 904 |
---|---|
container_issue | 6 |
container_start_page | 896 |
container_title | IEEE Journal of Quantum Electronics |
container_volume | 32 |
creator | Knippels, G.M.H. van de Meer, A.F.G. Mols, R.F.X.A.M. Oepts, D. van Amersfoort, P.W. Jaroszynski, D.A. |
description | The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator. |
doi_str_mv | 10.1109/3.502366 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28439508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>502366</ieee_id><sourcerecordid>28439508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-7e39571547d8a6bdb9c13643bf14844558328a267837f5ac25830b96a8b50eba3</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxYMouK6CZ08RRLx0TZq2SY-y-LGw4EXPIU0nbCSb1iQ9-N-bpcuehpn5vcfMQ-iWkhWlpH1mq5qUrGnO0ILWtSgop-wcLQihomhpyy_RVYw_ua0qQRbIbbxxE3gNeDBY4ZhgLJIaIUCPJ99PTqUhYGPB9XjwOO0yOCarlcPj5CLguMv0LDYqFNaboA5iEwAKcKBTyDqnIoRrdGFU1twc6xJ9v71-rT-K7ef7Zv2yLTRjJBUcWFtzWle8F6rp-q7VlDUV6wytRFXlr1gpVNlwwbiplS7zgHRto0RXE-gUW6L72XeIycqobQK904P3-RhZ1qzhPDOPMzOG4XeCmOTeRg3OKQ_DFGUpqnwFERl8mkEdhhgDGDkGu1fhT1IiD5FLJufIM_pw9FQxB5SD8NrGE88o4bxhGbubMQsAp-3R4x_Bl4df</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28439508</pqid></control><display><type>article</type><title>Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser</title><source>IEEE Electronic Library (IEL)</source><creator>Knippels, G.M.H. ; van de Meer, A.F.G. ; Mols, R.F.X.A.M. ; Oepts, D. ; van Amersfoort, P.W. ; Jaroszynski, D.A.</creator><creatorcontrib>Knippels, G.M.H. ; van de Meer, A.F.G. ; Mols, R.F.X.A.M. ; Oepts, D. ; van Amersfoort, P.W. ; Jaroszynski, D.A.</creatorcontrib><description>The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/3.502366</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Autocorrelation ; BEAM SHAPING ; ELECTROMAGNETIC PULSES ; Electromagnetism; electron and ion optics ; Electron optics ; ENGINEERING NOT INCLUDED IN OTHER CATEGORIES ; Exact sciences and technology ; FREE ELECTRON LASERS ; Fundamental areas of phenomenology (including applications) ; LASER CAVITIES ; MAGNETIC FIELDS ; Optical pulse shaping ; Optical pulses ; Optical saturation ; Physics ; Pulse measurements ; Radiation by moving charges ; Shape measurement ; Undulators ; Wavelength measurement ; WIGGLER MAGNETS</subject><ispartof>IEEE Journal of Quantum Electronics, 1996-06, Vol.32 (6), p.896-904</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-7e39571547d8a6bdb9c13643bf14844558328a267837f5ac25830b96a8b50eba3</citedby><cites>FETCH-LOGICAL-c330t-7e39571547d8a6bdb9c13643bf14844558328a267837f5ac25830b96a8b50eba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/502366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/502366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3107763$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/253677$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Knippels, G.M.H.</creatorcontrib><creatorcontrib>van de Meer, A.F.G.</creatorcontrib><creatorcontrib>Mols, R.F.X.A.M.</creatorcontrib><creatorcontrib>Oepts, D.</creatorcontrib><creatorcontrib>van Amersfoort, P.W.</creatorcontrib><creatorcontrib>Jaroszynski, D.A.</creatorcontrib><title>Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser</title><title>IEEE Journal of Quantum Electronics</title><addtitle>JQE</addtitle><description>The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator.</description><subject>Autocorrelation</subject><subject>BEAM SHAPING</subject><subject>ELECTROMAGNETIC PULSES</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Electron optics</subject><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</subject><subject>Exact sciences and technology</subject><subject>FREE ELECTRON LASERS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>LASER CAVITIES</subject><subject>MAGNETIC FIELDS</subject><subject>Optical pulse shaping</subject><subject>Optical pulses</subject><subject>Optical saturation</subject><subject>Physics</subject><subject>Pulse measurements</subject><subject>Radiation by moving charges</subject><subject>Shape measurement</subject><subject>Undulators</subject><subject>Wavelength measurement</subject><subject>WIGGLER MAGNETS</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LxDAQxYMouK6CZ08RRLx0TZq2SY-y-LGw4EXPIU0nbCSb1iQ9-N-bpcuehpn5vcfMQ-iWkhWlpH1mq5qUrGnO0ILWtSgop-wcLQihomhpyy_RVYw_ua0qQRbIbbxxE3gNeDBY4ZhgLJIaIUCPJ99PTqUhYGPB9XjwOO0yOCarlcPj5CLguMv0LDYqFNaboA5iEwAKcKBTyDqnIoRrdGFU1twc6xJ9v71-rT-K7ef7Zv2yLTRjJBUcWFtzWle8F6rp-q7VlDUV6wytRFXlr1gpVNlwwbiplS7zgHRto0RXE-gUW6L72XeIycqobQK904P3-RhZ1qzhPDOPMzOG4XeCmOTeRg3OKQ_DFGUpqnwFERl8mkEdhhgDGDkGu1fhT1IiD5FLJufIM_pw9FQxB5SD8NrGE88o4bxhGbubMQsAp-3R4x_Bl4df</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Knippels, G.M.H.</creator><creator>van de Meer, A.F.G.</creator><creator>Mols, R.F.X.A.M.</creator><creator>Oepts, D.</creator><creator>van Amersfoort, P.W.</creator><creator>Jaroszynski, D.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19960601</creationdate><title>Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser</title><author>Knippels, G.M.H. ; van de Meer, A.F.G. ; Mols, R.F.X.A.M. ; Oepts, D. ; van Amersfoort, P.W. ; Jaroszynski, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-7e39571547d8a6bdb9c13643bf14844558328a267837f5ac25830b96a8b50eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Autocorrelation</topic><topic>BEAM SHAPING</topic><topic>ELECTROMAGNETIC PULSES</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Electron optics</topic><topic>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</topic><topic>Exact sciences and technology</topic><topic>FREE ELECTRON LASERS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>LASER CAVITIES</topic><topic>MAGNETIC FIELDS</topic><topic>Optical pulse shaping</topic><topic>Optical pulses</topic><topic>Optical saturation</topic><topic>Physics</topic><topic>Pulse measurements</topic><topic>Radiation by moving charges</topic><topic>Shape measurement</topic><topic>Undulators</topic><topic>Wavelength measurement</topic><topic>WIGGLER MAGNETS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knippels, G.M.H.</creatorcontrib><creatorcontrib>van de Meer, A.F.G.</creatorcontrib><creatorcontrib>Mols, R.F.X.A.M.</creatorcontrib><creatorcontrib>Oepts, D.</creatorcontrib><creatorcontrib>van Amersfoort, P.W.</creatorcontrib><creatorcontrib>Jaroszynski, D.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE Journal of Quantum Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knippels, G.M.H.</au><au>van de Meer, A.F.G.</au><au>Mols, R.F.X.A.M.</au><au>Oepts, D.</au><au>van Amersfoort, P.W.</au><au>Jaroszynski, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser</atitle><jtitle>IEEE Journal of Quantum Electronics</jtitle><stitle>JQE</stitle><date>1996-06-01</date><risdate>1996</risdate><volume>32</volume><issue>6</issue><spage>896</spage><epage>904</epage><pages>896-904</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/3.502366</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE Journal of Quantum Electronics, 1996-06, Vol.32 (6), p.896-904 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_proquest_miscellaneous_28439508 |
source | IEEE Electronic Library (IEL) |
subjects | Autocorrelation BEAM SHAPING ELECTROMAGNETIC PULSES Electromagnetism electron and ion optics Electron optics ENGINEERING NOT INCLUDED IN OTHER CATEGORIES Exact sciences and technology FREE ELECTRON LASERS Fundamental areas of phenomenology (including applications) LASER CAVITIES MAGNETIC FIELDS Optical pulse shaping Optical pulses Optical saturation Physics Pulse measurements Radiation by moving charges Shape measurement Undulators Wavelength measurement WIGGLER MAGNETS |
title | Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20a%20step-tapered%20undulator%20field%20on%20the%20optical%20pulse%20shape%20of%20a%20far-infrared%20free-electron%20laser&rft.jtitle=IEEE%20Journal%20of%20Quantum%20Electronics&rft.au=Knippels,%20G.M.H.&rft.date=1996-06-01&rft.volume=32&rft.issue=6&rft.spage=896&rft.epage=904&rft.pages=896-904&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/3.502366&rft_dat=%3Cproquest_RIE%3E28439508%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28439508&rft_id=info:pmid/&rft_ieee_id=502366&rfr_iscdi=true |