The ionosphere of Titan: an updated theoretical model

Titan has an atmosphere consisting mainly of molecular nitrogen and methane. Solar extreme ultraviolet and X-ray radiation and energetic electrons from Saturn’s magnetosphere interact with the upper atmosphere producing an ionosphere. This paper describes improvements to earlier models of Titan’s io...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2004, Vol.33 (2), p.212-215
Hauptverfasser: Cravens, T.E., Vann, J., Clark, J., Yu, J., Keller, C.N., Brull, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 2
container_start_page 212
container_title Advances in space research
container_volume 33
creator Cravens, T.E.
Vann, J.
Clark, J.
Yu, J.
Keller, C.N.
Brull, C.
description Titan has an atmosphere consisting mainly of molecular nitrogen and methane. Solar extreme ultraviolet and X-ray radiation and energetic electrons from Saturn’s magnetosphere interact with the upper atmosphere producing an ionosphere. This paper describes improvements to earlier models of Titan’s ionosphere. In particular, we consider in more detail ion production from solar ionizing radiation for solar zenith angles beyond the terminator, and a higher spectral resolution soft X-ray flux is adopted in the ion production rate calculations. We demonstrate that significant photoionization takes place well beyond the terminator. K-shell photoionization is also included, and this process adds Auger electrons to the ionospheric photoelectron spectrum, which we model using the two-stream transport code. Our calculated photoelectron spectrum shows a distinct Auger electron peak near an energy of 400 eV.
doi_str_mv 10.1016/j.asr.2003.02.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28430915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117703010585</els_id><sourcerecordid>28430915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-c469c8094bc88d2ef2c2276e04bbe4a96fffb28513509e1d5ca5236f285021123</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwA9gysSXcOU7swIQqvqRKLGW2HOesukrjYqdI_HtSygzTSafnfXX3MHaNUCBgfbspTIoFBygL4AUgP2EzVLLJsRHqlM2AyzJHlPKcXaS0gYmQEmasWq0p82EIabemSFlw2cqPZrjLzJDtd50ZqcvGNYVIo7emz7aho_6SnTnTJ7r6nXP2_vS4Wrzky7fn18XDMrdlJcfcirqxChrRWqU6To5bzmVNINqWhGlq51zLVYVlBQ1hV1lT8bJ20wo4Ii_n7ObYu4vhY09p1FufLPW9GSjsk-ZKlNBg9S-ICgQqUU8gHkEbQ0qRnN5FvzXxSyPog0m90ZNJfTCpgWv4ueL-mKHp1U9PUSfrabDU-Uh21F3wf6S_AdFbef4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18041846</pqid></control><display><type>article</type><title>The ionosphere of Titan: an updated theoretical model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cravens, T.E. ; Vann, J. ; Clark, J. ; Yu, J. ; Keller, C.N. ; Brull, C.</creator><creatorcontrib>Cravens, T.E. ; Vann, J. ; Clark, J. ; Yu, J. ; Keller, C.N. ; Brull, C.</creatorcontrib><description>Titan has an atmosphere consisting mainly of molecular nitrogen and methane. Solar extreme ultraviolet and X-ray radiation and energetic electrons from Saturn’s magnetosphere interact with the upper atmosphere producing an ionosphere. This paper describes improvements to earlier models of Titan’s ionosphere. In particular, we consider in more detail ion production from solar ionizing radiation for solar zenith angles beyond the terminator, and a higher spectral resolution soft X-ray flux is adopted in the ion production rate calculations. We demonstrate that significant photoionization takes place well beyond the terminator. K-shell photoionization is also included, and this process adds Auger electrons to the ionospheric photoelectron spectrum, which we model using the two-stream transport code. Our calculated photoelectron spectrum shows a distinct Auger electron peak near an energy of 400 eV.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2003.02.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Auger electrons ; Photoelectron spectrum ; Titan ionosphere</subject><ispartof>Advances in space research, 2004, Vol.33 (2), p.212-215</ispartof><rights>2003 COSPAR</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-c469c8094bc88d2ef2c2276e04bbe4a96fffb28513509e1d5ca5236f285021123</citedby><cites>FETCH-LOGICAL-c357t-c469c8094bc88d2ef2c2276e04bbe4a96fffb28513509e1d5ca5236f285021123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0273117703010585$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cravens, T.E.</creatorcontrib><creatorcontrib>Vann, J.</creatorcontrib><creatorcontrib>Clark, J.</creatorcontrib><creatorcontrib>Yu, J.</creatorcontrib><creatorcontrib>Keller, C.N.</creatorcontrib><creatorcontrib>Brull, C.</creatorcontrib><title>The ionosphere of Titan: an updated theoretical model</title><title>Advances in space research</title><description>Titan has an atmosphere consisting mainly of molecular nitrogen and methane. Solar extreme ultraviolet and X-ray radiation and energetic electrons from Saturn’s magnetosphere interact with the upper atmosphere producing an ionosphere. This paper describes improvements to earlier models of Titan’s ionosphere. In particular, we consider in more detail ion production from solar ionizing radiation for solar zenith angles beyond the terminator, and a higher spectral resolution soft X-ray flux is adopted in the ion production rate calculations. We demonstrate that significant photoionization takes place well beyond the terminator. K-shell photoionization is also included, and this process adds Auger electrons to the ionospheric photoelectron spectrum, which we model using the two-stream transport code. Our calculated photoelectron spectrum shows a distinct Auger electron peak near an energy of 400 eV.</description><subject>Auger electrons</subject><subject>Photoelectron spectrum</subject><subject>Titan ionosphere</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwA9gysSXcOU7swIQqvqRKLGW2HOesukrjYqdI_HtSygzTSafnfXX3MHaNUCBgfbspTIoFBygL4AUgP2EzVLLJsRHqlM2AyzJHlPKcXaS0gYmQEmasWq0p82EIabemSFlw2cqPZrjLzJDtd50ZqcvGNYVIo7emz7aho_6SnTnTJ7r6nXP2_vS4Wrzky7fn18XDMrdlJcfcirqxChrRWqU6To5bzmVNINqWhGlq51zLVYVlBQ1hV1lT8bJ20wo4Ii_n7ObYu4vhY09p1FufLPW9GSjsk-ZKlNBg9S-ICgQqUU8gHkEbQ0qRnN5FvzXxSyPog0m90ZNJfTCpgWv4ueL-mKHp1U9PUSfrabDU-Uh21F3wf6S_AdFbef4</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Cravens, T.E.</creator><creator>Vann, J.</creator><creator>Clark, J.</creator><creator>Yu, J.</creator><creator>Keller, C.N.</creator><creator>Brull, C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2004</creationdate><title>The ionosphere of Titan: an updated theoretical model</title><author>Cravens, T.E. ; Vann, J. ; Clark, J. ; Yu, J. ; Keller, C.N. ; Brull, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-c469c8094bc88d2ef2c2276e04bbe4a96fffb28513509e1d5ca5236f285021123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Auger electrons</topic><topic>Photoelectron spectrum</topic><topic>Titan ionosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cravens, T.E.</creatorcontrib><creatorcontrib>Vann, J.</creatorcontrib><creatorcontrib>Clark, J.</creatorcontrib><creatorcontrib>Yu, J.</creatorcontrib><creatorcontrib>Keller, C.N.</creatorcontrib><creatorcontrib>Brull, C.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cravens, T.E.</au><au>Vann, J.</au><au>Clark, J.</au><au>Yu, J.</au><au>Keller, C.N.</au><au>Brull, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ionosphere of Titan: an updated theoretical model</atitle><jtitle>Advances in space research</jtitle><date>2004</date><risdate>2004</risdate><volume>33</volume><issue>2</issue><spage>212</spage><epage>215</epage><pages>212-215</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>Titan has an atmosphere consisting mainly of molecular nitrogen and methane. Solar extreme ultraviolet and X-ray radiation and energetic electrons from Saturn’s magnetosphere interact with the upper atmosphere producing an ionosphere. This paper describes improvements to earlier models of Titan’s ionosphere. In particular, we consider in more detail ion production from solar ionizing radiation for solar zenith angles beyond the terminator, and a higher spectral resolution soft X-ray flux is adopted in the ion production rate calculations. We demonstrate that significant photoionization takes place well beyond the terminator. K-shell photoionization is also included, and this process adds Auger electrons to the ionospheric photoelectron spectrum, which we model using the two-stream transport code. Our calculated photoelectron spectrum shows a distinct Auger electron peak near an energy of 400 eV.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2003.02.012</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1177
ispartof Advances in space research, 2004, Vol.33 (2), p.212-215
issn 0273-1177
1879-1948
language eng
recordid cdi_proquest_miscellaneous_28430915
source ScienceDirect Journals (5 years ago - present)
subjects Auger electrons
Photoelectron spectrum
Titan ionosphere
title The ionosphere of Titan: an updated theoretical model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ionosphere%20of%20Titan:%20an%20updated%20theoretical%20model&rft.jtitle=Advances%20in%20space%20research&rft.au=Cravens,%20T.E.&rft.date=2004&rft.volume=33&rft.issue=2&rft.spage=212&rft.epage=215&rft.pages=212-215&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2003.02.012&rft_dat=%3Cproquest_cross%3E28430915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18041846&rft_id=info:pmid/&rft_els_id=S0273117703010585&rfr_iscdi=true