InGaN/GaN superlattice underlayer for fabricating of red nanocolumn μ-LEDs with (10-11) plane InGaN/AlGaN MQWs

In this study, the growth behavior of Indium gallium nitride (InGaN)-based nanocolumn arrays was investigated, and red emission nanocolumn micro-light emitting diodes (μ-LEDs) were fabricated. The internal structure of the InGaN/GaN superlattice (SL) layer under the multiple-quantum-well (MQW) activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2023-10, Vol.34 (43), p.435201
Hauptverfasser: Yamada, Jumpei, Mizuno, Ai, Honda, Tatsuya, Yoshida, Keigo, Togashi, Rie, Nomura, Ichirou, Yamaguchi, Tomohiro, Honda, Tohru, Kishino, Katsumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 43
container_start_page 435201
container_title Nanotechnology
container_volume 34
creator Yamada, Jumpei
Mizuno, Ai
Honda, Tatsuya
Yoshida, Keigo
Togashi, Rie
Nomura, Ichirou
Yamaguchi, Tomohiro
Honda, Tohru
Kishino, Katsumi
description In this study, the growth behavior of Indium gallium nitride (InGaN)-based nanocolumn arrays was investigated, and red emission nanocolumn micro-light emitting diodes (μ-LEDs) were fabricated. The internal structure of the InGaN/GaN superlattice (SL) layer under the multiple-quantum-well (MQW) active layers was evaluated using high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis. It was revealed that the InGaN crystal plane at the top of the nanocolumn changed from the c-plane, (1-102) plane, to the (10-11) plane as the number of SL pairs increased. A semipolar (10-11) plane was completely formed on top of the nanocolumn by growing InGaN/GaN SLs over 15-20 pairs, where the InGaN/GaN SL layers were uniformly piled up, maintaining the (10-11) plane. Therefore, when InGaN/AlGaN MQWs were grown on the (10-11) plane InGaN/GaN SL layer, the growth of the (10-11) plane semipolar InGaN active layers was observed in the HAADF-STEM image. Moreover, the acute nanocolumn top of the (10-11) plane of the InGaN/GaN SL underlayer did not contribute to the formation of the c-plane InGaN core region. Red nanocolumn μ-LEDs with an φ12 µm emission window were fabricated using the (10-11) plane MQWs to obtain the external quantum efficiency (EQE) of 1.01 % at 51 A/cm2. The process of nanocolumn μ-LEDs suitable for the smaller emission windows was provided, where the flat p-GaN contact layer contributed to forming a fine emission window of φ5 µm.
doi_str_mv 10.1088/1361-6528/acea88
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2843038007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843038007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-8a9d88010755ffa53f7391f63f6240728e790bc761ffa2bcf2afdad24e4e2faa3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOo7uXUmWCtY5ubRJl-IdRkVQXIZMmmil09SkRebdfAafyZaqKxFyCEm-8yf5ENojcExAyhlhGUmylMqZNlZLuYYmv1vraAJ5KhLOJd9C2zG-AhAiKdlEW0zwnMs8nSB_XV_q21lfOHaNDZVu29JY3NXFsFjZgJ3vSy9CaXRb1s_YOxxsgWtde-Orblnjz49kfn4W8XvZvuADAgkhh7ipdG3xGH9SDRfc3D_FHbThdBXt7vc8RY8X5w-nV8n87vL69GSeGCagTaTOCymBgEhT53TKnGA5cRlzGeUgqLQih4URGelP6cI4ql2hC8ott9RpzaboYMxtgn_rbGzVsozGVsOjfBcVlZwBkwCiR2FETfAxButUE8qlDitFQA2a1eBUDU7VqLlv2f9O7xZLW_w2_HjtgaMRKH2jXn0X6v6z_-Ud_oEPhhXjirN-pBSIagrHvgA5oZPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843038007</pqid></control><display><type>article</type><title>InGaN/GaN superlattice underlayer for fabricating of red nanocolumn μ-LEDs with (10-11) plane InGaN/AlGaN MQWs</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yamada, Jumpei ; Mizuno, Ai ; Honda, Tatsuya ; Yoshida, Keigo ; Togashi, Rie ; Nomura, Ichirou ; Yamaguchi, Tomohiro ; Honda, Tohru ; Kishino, Katsumi</creator><creatorcontrib>Yamada, Jumpei ; Mizuno, Ai ; Honda, Tatsuya ; Yoshida, Keigo ; Togashi, Rie ; Nomura, Ichirou ; Yamaguchi, Tomohiro ; Honda, Tohru ; Kishino, Katsumi</creatorcontrib><description>In this study, the growth behavior of Indium gallium nitride (InGaN)-based nanocolumn arrays was investigated, and red emission nanocolumn micro-light emitting diodes (μ-LEDs) were fabricated. The internal structure of the InGaN/GaN superlattice (SL) layer under the multiple-quantum-well (MQW) active layers was evaluated using high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis. It was revealed that the InGaN crystal plane at the top of the nanocolumn changed from the c-plane, (1-102) plane, to the (10-11) plane as the number of SL pairs increased. A semipolar (10-11) plane was completely formed on top of the nanocolumn by growing InGaN/GaN SLs over 15-20 pairs, where the InGaN/GaN SL layers were uniformly piled up, maintaining the (10-11) plane. Therefore, when InGaN/AlGaN MQWs were grown on the (10-11) plane InGaN/GaN SL layer, the growth of the (10-11) plane semipolar InGaN active layers was observed in the HAADF-STEM image. Moreover, the acute nanocolumn top of the (10-11) plane of the InGaN/GaN SL underlayer did not contribute to the formation of the c-plane InGaN core region. Red nanocolumn μ-LEDs with an φ12 µm emission window were fabricated using the (10-11) plane MQWs to obtain the external quantum efficiency (EQE) of 1.01 % at 51 A/cm2. The process of nanocolumn μ-LEDs suitable for the smaller emission windows was provided, where the flat p-GaN contact layer contributed to forming a fine emission window of φ5 µm.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/acea88</identifier><identifier>PMID: 37494895</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>InGaN ; MBE ; micro-LED ; nanocolumn ; semipolar</subject><ispartof>Nanotechnology, 2023-10, Vol.34 (43), p.435201</ispartof><rights>2023 IOP Publishing Ltd</rights><rights>2023 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-8a9d88010755ffa53f7391f63f6240728e790bc761ffa2bcf2afdad24e4e2faa3</citedby><cites>FETCH-LOGICAL-c370t-8a9d88010755ffa53f7391f63f6240728e790bc761ffa2bcf2afdad24e4e2faa3</cites><orcidid>0000-0001-9322-1440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/acea88/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37494895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamada, Jumpei</creatorcontrib><creatorcontrib>Mizuno, Ai</creatorcontrib><creatorcontrib>Honda, Tatsuya</creatorcontrib><creatorcontrib>Yoshida, Keigo</creatorcontrib><creatorcontrib>Togashi, Rie</creatorcontrib><creatorcontrib>Nomura, Ichirou</creatorcontrib><creatorcontrib>Yamaguchi, Tomohiro</creatorcontrib><creatorcontrib>Honda, Tohru</creatorcontrib><creatorcontrib>Kishino, Katsumi</creatorcontrib><title>InGaN/GaN superlattice underlayer for fabricating of red nanocolumn μ-LEDs with (10-11) plane InGaN/AlGaN MQWs</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>In this study, the growth behavior of Indium gallium nitride (InGaN)-based nanocolumn arrays was investigated, and red emission nanocolumn micro-light emitting diodes (μ-LEDs) were fabricated. The internal structure of the InGaN/GaN superlattice (SL) layer under the multiple-quantum-well (MQW) active layers was evaluated using high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis. It was revealed that the InGaN crystal plane at the top of the nanocolumn changed from the c-plane, (1-102) plane, to the (10-11) plane as the number of SL pairs increased. A semipolar (10-11) plane was completely formed on top of the nanocolumn by growing InGaN/GaN SLs over 15-20 pairs, where the InGaN/GaN SL layers were uniformly piled up, maintaining the (10-11) plane. Therefore, when InGaN/AlGaN MQWs were grown on the (10-11) plane InGaN/GaN SL layer, the growth of the (10-11) plane semipolar InGaN active layers was observed in the HAADF-STEM image. Moreover, the acute nanocolumn top of the (10-11) plane of the InGaN/GaN SL underlayer did not contribute to the formation of the c-plane InGaN core region. Red nanocolumn μ-LEDs with an φ12 µm emission window were fabricated using the (10-11) plane MQWs to obtain the external quantum efficiency (EQE) of 1.01 % at 51 A/cm2. The process of nanocolumn μ-LEDs suitable for the smaller emission windows was provided, where the flat p-GaN contact layer contributed to forming a fine emission window of φ5 µm.</description><subject>InGaN</subject><subject>MBE</subject><subject>micro-LED</subject><subject>nanocolumn</subject><subject>semipolar</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOo7uXUmWCtY5ubRJl-IdRkVQXIZMmmil09SkRebdfAafyZaqKxFyCEm-8yf5ENojcExAyhlhGUmylMqZNlZLuYYmv1vraAJ5KhLOJd9C2zG-AhAiKdlEW0zwnMs8nSB_XV_q21lfOHaNDZVu29JY3NXFsFjZgJ3vSy9CaXRb1s_YOxxsgWtde-Orblnjz49kfn4W8XvZvuADAgkhh7ipdG3xGH9SDRfc3D_FHbThdBXt7vc8RY8X5w-nV8n87vL69GSeGCagTaTOCymBgEhT53TKnGA5cRlzGeUgqLQih4URGelP6cI4ql2hC8ott9RpzaboYMxtgn_rbGzVsozGVsOjfBcVlZwBkwCiR2FETfAxButUE8qlDitFQA2a1eBUDU7VqLlv2f9O7xZLW_w2_HjtgaMRKH2jXn0X6v6z_-Ud_oEPhhXjirN-pBSIagrHvgA5oZPw</recordid><startdate>20231023</startdate><enddate>20231023</enddate><creator>Yamada, Jumpei</creator><creator>Mizuno, Ai</creator><creator>Honda, Tatsuya</creator><creator>Yoshida, Keigo</creator><creator>Togashi, Rie</creator><creator>Nomura, Ichirou</creator><creator>Yamaguchi, Tomohiro</creator><creator>Honda, Tohru</creator><creator>Kishino, Katsumi</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9322-1440</orcidid></search><sort><creationdate>20231023</creationdate><title>InGaN/GaN superlattice underlayer for fabricating of red nanocolumn μ-LEDs with (10-11) plane InGaN/AlGaN MQWs</title><author>Yamada, Jumpei ; Mizuno, Ai ; Honda, Tatsuya ; Yoshida, Keigo ; Togashi, Rie ; Nomura, Ichirou ; Yamaguchi, Tomohiro ; Honda, Tohru ; Kishino, Katsumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-8a9d88010755ffa53f7391f63f6240728e790bc761ffa2bcf2afdad24e4e2faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>InGaN</topic><topic>MBE</topic><topic>micro-LED</topic><topic>nanocolumn</topic><topic>semipolar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamada, Jumpei</creatorcontrib><creatorcontrib>Mizuno, Ai</creatorcontrib><creatorcontrib>Honda, Tatsuya</creatorcontrib><creatorcontrib>Yoshida, Keigo</creatorcontrib><creatorcontrib>Togashi, Rie</creatorcontrib><creatorcontrib>Nomura, Ichirou</creatorcontrib><creatorcontrib>Yamaguchi, Tomohiro</creatorcontrib><creatorcontrib>Honda, Tohru</creatorcontrib><creatorcontrib>Kishino, Katsumi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamada, Jumpei</au><au>Mizuno, Ai</au><au>Honda, Tatsuya</au><au>Yoshida, Keigo</au><au>Togashi, Rie</au><au>Nomura, Ichirou</au><au>Yamaguchi, Tomohiro</au><au>Honda, Tohru</au><au>Kishino, Katsumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InGaN/GaN superlattice underlayer for fabricating of red nanocolumn μ-LEDs with (10-11) plane InGaN/AlGaN MQWs</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2023-10-23</date><risdate>2023</risdate><volume>34</volume><issue>43</issue><spage>435201</spage><pages>435201-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>In this study, the growth behavior of Indium gallium nitride (InGaN)-based nanocolumn arrays was investigated, and red emission nanocolumn micro-light emitting diodes (μ-LEDs) were fabricated. The internal structure of the InGaN/GaN superlattice (SL) layer under the multiple-quantum-well (MQW) active layers was evaluated using high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis. It was revealed that the InGaN crystal plane at the top of the nanocolumn changed from the c-plane, (1-102) plane, to the (10-11) plane as the number of SL pairs increased. A semipolar (10-11) plane was completely formed on top of the nanocolumn by growing InGaN/GaN SLs over 15-20 pairs, where the InGaN/GaN SL layers were uniformly piled up, maintaining the (10-11) plane. Therefore, when InGaN/AlGaN MQWs were grown on the (10-11) plane InGaN/GaN SL layer, the growth of the (10-11) plane semipolar InGaN active layers was observed in the HAADF-STEM image. Moreover, the acute nanocolumn top of the (10-11) plane of the InGaN/GaN SL underlayer did not contribute to the formation of the c-plane InGaN core region. Red nanocolumn μ-LEDs with an φ12 µm emission window were fabricated using the (10-11) plane MQWs to obtain the external quantum efficiency (EQE) of 1.01 % at 51 A/cm2. The process of nanocolumn μ-LEDs suitable for the smaller emission windows was provided, where the flat p-GaN contact layer contributed to forming a fine emission window of φ5 µm.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>37494895</pmid><doi>10.1088/1361-6528/acea88</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9322-1440</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2023-10, Vol.34 (43), p.435201
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_2843038007
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects InGaN
MBE
micro-LED
nanocolumn
semipolar
title InGaN/GaN superlattice underlayer for fabricating of red nanocolumn μ-LEDs with (10-11) plane InGaN/AlGaN MQWs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InGaN/GaN%20superlattice%20underlayer%20for%20fabricating%20of%20red%20nanocolumn%20%CE%BC-LEDs%20with%20(10-11)%20plane%20InGaN/AlGaN%20MQWs&rft.jtitle=Nanotechnology&rft.au=Yamada,%20Jumpei&rft.date=2023-10-23&rft.volume=34&rft.issue=43&rft.spage=435201&rft.pages=435201-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/acea88&rft_dat=%3Cproquest_iop_j%3E2843038007%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843038007&rft_id=info:pmid/37494895&rfr_iscdi=true