Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup
In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the i...
Gespeichert in:
Veröffentlicht in: | Journal of the American College of Radiology 2023-08, Vol.20 (8), p.730-737 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 737 |
---|---|
container_issue | 8 |
container_start_page | 730 |
container_title | Journal of the American College of Radiology |
container_volume | 20 |
creator | Sammer, Marla B.K. Akbari, Yasmin S. Barth, Richard A. Blumer, Steven L. Dillman, Jonathan R. Farmakis, Shannon G. Frush, Don P. Gokli, Ami Halabi, Safwan S. Iyer, Ramesh Joshi, Aparna Kwon, Jeannie K. Otero, Hansel J. Sher, Andrew C. Sotardi, Susan T. Taragin, Benjamin H. Towbin, Alexander J. Wald, Christoph |
description | In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children. |
doi_str_mv | 10.1016/j.jacr.2023.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2843035117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S154614402300409X</els_id><sourcerecordid>2843035117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d2af9f00f9a364c186c012e3b28b94a8b52d31185f62847340f618d7aa06380e3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhiMEoh_wBzggHzmQMP6I4yAuqxUtK1WiqqjKzfI6462XJE5tL1IlfjyJtiBOnGY0et5Xmqco3lCoKFD5YV_tjY0VA8YrkBUAf1ac0rpWJRft9-fLLmRJhYCT4iylPQBrGqVeFie8Ea1idXta_LpNSIIjq5i989abnmzGjH3vdzhaJH4kN6bzoQ-7x49kM0zGZhJGco2dNzl6S65N9jjm9J4YcnfvM86XCSO5iGEg-R7Jan3zD77akLsQf-xiOEyvihfO9AlfP83z4vbi87f1l_Lq6-VmvboqrQDIZceMax2Aaw2XwlIlLVCGfMvUthVGbWvWcUpV7SRTouECnKSqa4wByRUgPy_eHXunGB4OmLIefLLzk2bEcEh6TnHgNaXNjLIjamNIKaLTU_SDiY-agl6s671erOvFugapZ-tz6O1T_2E7YPc38kfzDHw6Ajh_-dNj1Mn6xW_nI9qsu-D_1_8bRrSSKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843035117</pqid></control><display><type>article</type><title>Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sammer, Marla B.K. ; Akbari, Yasmin S. ; Barth, Richard A. ; Blumer, Steven L. ; Dillman, Jonathan R. ; Farmakis, Shannon G. ; Frush, Don P. ; Gokli, Ami ; Halabi, Safwan S. ; Iyer, Ramesh ; Joshi, Aparna ; Kwon, Jeannie K. ; Otero, Hansel J. ; Sher, Andrew C. ; Sotardi, Susan T. ; Taragin, Benjamin H. ; Towbin, Alexander J. ; Wald, Christoph</creator><creatorcontrib>Sammer, Marla B.K. ; Akbari, Yasmin S. ; Barth, Richard A. ; Blumer, Steven L. ; Dillman, Jonathan R. ; Farmakis, Shannon G. ; Frush, Don P. ; Gokli, Ami ; Halabi, Safwan S. ; Iyer, Ramesh ; Joshi, Aparna ; Kwon, Jeannie K. ; Otero, Hansel J. ; Sher, Andrew C. ; Sotardi, Susan T. ; Taragin, Benjamin H. ; Towbin, Alexander J. ; Wald, Christoph</creatorcontrib><description>In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children.</description><identifier>ISSN: 1546-1440</identifier><identifier>EISSN: 1558-349X</identifier><identifier>DOI: 10.1016/j.jacr.2023.06.003</identifier><identifier>PMID: 37498259</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Journal of the American College of Radiology, 2023-08, Vol.20 (8), p.730-737</ispartof><rights>2023 American College of Radiology</rights><rights>Copyright © 2023 American College of Radiology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d2af9f00f9a364c186c012e3b28b94a8b52d31185f62847340f618d7aa06380e3</citedby><cites>FETCH-LOGICAL-c400t-d2af9f00f9a364c186c012e3b28b94a8b52d31185f62847340f618d7aa06380e3</cites><orcidid>0000-0002-0026-0326 ; 0000-0003-1729-5071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S154614402300409X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37498259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sammer, Marla B.K.</creatorcontrib><creatorcontrib>Akbari, Yasmin S.</creatorcontrib><creatorcontrib>Barth, Richard A.</creatorcontrib><creatorcontrib>Blumer, Steven L.</creatorcontrib><creatorcontrib>Dillman, Jonathan R.</creatorcontrib><creatorcontrib>Farmakis, Shannon G.</creatorcontrib><creatorcontrib>Frush, Don P.</creatorcontrib><creatorcontrib>Gokli, Ami</creatorcontrib><creatorcontrib>Halabi, Safwan S.</creatorcontrib><creatorcontrib>Iyer, Ramesh</creatorcontrib><creatorcontrib>Joshi, Aparna</creatorcontrib><creatorcontrib>Kwon, Jeannie K.</creatorcontrib><creatorcontrib>Otero, Hansel J.</creatorcontrib><creatorcontrib>Sher, Andrew C.</creatorcontrib><creatorcontrib>Sotardi, Susan T.</creatorcontrib><creatorcontrib>Taragin, Benjamin H.</creatorcontrib><creatorcontrib>Towbin, Alexander J.</creatorcontrib><creatorcontrib>Wald, Christoph</creatorcontrib><title>Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup</title><title>Journal of the American College of Radiology</title><addtitle>J Am Coll Radiol</addtitle><description>In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children.</description><issn>1546-1440</issn><issn>1558-349X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhiMEoh_wBzggHzmQMP6I4yAuqxUtK1WiqqjKzfI6462XJE5tL1IlfjyJtiBOnGY0et5Xmqco3lCoKFD5YV_tjY0VA8YrkBUAf1ac0rpWJRft9-fLLmRJhYCT4iylPQBrGqVeFie8Ea1idXta_LpNSIIjq5i989abnmzGjH3vdzhaJH4kN6bzoQ-7x49kM0zGZhJGco2dNzl6S65N9jjm9J4YcnfvM86XCSO5iGEg-R7Jan3zD77akLsQf-xiOEyvihfO9AlfP83z4vbi87f1l_Lq6-VmvboqrQDIZceMax2Aaw2XwlIlLVCGfMvUthVGbWvWcUpV7SRTouECnKSqa4wByRUgPy_eHXunGB4OmLIefLLzk2bEcEh6TnHgNaXNjLIjamNIKaLTU_SDiY-agl6s671erOvFugapZ-tz6O1T_2E7YPc38kfzDHw6Ajh_-dNj1Mn6xW_nI9qsu-D_1_8bRrSSKg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Sammer, Marla B.K.</creator><creator>Akbari, Yasmin S.</creator><creator>Barth, Richard A.</creator><creator>Blumer, Steven L.</creator><creator>Dillman, Jonathan R.</creator><creator>Farmakis, Shannon G.</creator><creator>Frush, Don P.</creator><creator>Gokli, Ami</creator><creator>Halabi, Safwan S.</creator><creator>Iyer, Ramesh</creator><creator>Joshi, Aparna</creator><creator>Kwon, Jeannie K.</creator><creator>Otero, Hansel J.</creator><creator>Sher, Andrew C.</creator><creator>Sotardi, Susan T.</creator><creator>Taragin, Benjamin H.</creator><creator>Towbin, Alexander J.</creator><creator>Wald, Christoph</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0026-0326</orcidid><orcidid>https://orcid.org/0000-0003-1729-5071</orcidid></search><sort><creationdate>20230801</creationdate><title>Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup</title><author>Sammer, Marla B.K. ; Akbari, Yasmin S. ; Barth, Richard A. ; Blumer, Steven L. ; Dillman, Jonathan R. ; Farmakis, Shannon G. ; Frush, Don P. ; Gokli, Ami ; Halabi, Safwan S. ; Iyer, Ramesh ; Joshi, Aparna ; Kwon, Jeannie K. ; Otero, Hansel J. ; Sher, Andrew C. ; Sotardi, Susan T. ; Taragin, Benjamin H. ; Towbin, Alexander J. ; Wald, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d2af9f00f9a364c186c012e3b28b94a8b52d31185f62847340f618d7aa06380e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sammer, Marla B.K.</creatorcontrib><creatorcontrib>Akbari, Yasmin S.</creatorcontrib><creatorcontrib>Barth, Richard A.</creatorcontrib><creatorcontrib>Blumer, Steven L.</creatorcontrib><creatorcontrib>Dillman, Jonathan R.</creatorcontrib><creatorcontrib>Farmakis, Shannon G.</creatorcontrib><creatorcontrib>Frush, Don P.</creatorcontrib><creatorcontrib>Gokli, Ami</creatorcontrib><creatorcontrib>Halabi, Safwan S.</creatorcontrib><creatorcontrib>Iyer, Ramesh</creatorcontrib><creatorcontrib>Joshi, Aparna</creatorcontrib><creatorcontrib>Kwon, Jeannie K.</creatorcontrib><creatorcontrib>Otero, Hansel J.</creatorcontrib><creatorcontrib>Sher, Andrew C.</creatorcontrib><creatorcontrib>Sotardi, Susan T.</creatorcontrib><creatorcontrib>Taragin, Benjamin H.</creatorcontrib><creatorcontrib>Towbin, Alexander J.</creatorcontrib><creatorcontrib>Wald, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American College of Radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sammer, Marla B.K.</au><au>Akbari, Yasmin S.</au><au>Barth, Richard A.</au><au>Blumer, Steven L.</au><au>Dillman, Jonathan R.</au><au>Farmakis, Shannon G.</au><au>Frush, Don P.</au><au>Gokli, Ami</au><au>Halabi, Safwan S.</au><au>Iyer, Ramesh</au><au>Joshi, Aparna</au><au>Kwon, Jeannie K.</au><au>Otero, Hansel J.</au><au>Sher, Andrew C.</au><au>Sotardi, Susan T.</au><au>Taragin, Benjamin H.</au><au>Towbin, Alexander J.</au><au>Wald, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup</atitle><jtitle>Journal of the American College of Radiology</jtitle><addtitle>J Am Coll Radiol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>20</volume><issue>8</issue><spage>730</spage><epage>737</epage><pages>730-737</pages><issn>1546-1440</issn><eissn>1558-349X</eissn><abstract>In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37498259</pmid><doi>10.1016/j.jacr.2023.06.003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0026-0326</orcidid><orcidid>https://orcid.org/0000-0003-1729-5071</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-1440 |
ispartof | Journal of the American College of Radiology, 2023-08, Vol.20 (8), p.730-737 |
issn | 1546-1440 1558-349X |
language | eng |
recordid | cdi_proquest_miscellaneous_2843035117 |
source | Elsevier ScienceDirect Journals Complete |
title | Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Artificial%20Intelligence%20in%20Radiology:%20Impact%20on%20Pediatric%20Patients,%20a%20White%20Paper%20From%20the%20ACR%20Pediatric%20AI%20Workgroup&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Radiology&rft.au=Sammer,%20Marla%20B.K.&rft.date=2023-08-01&rft.volume=20&rft.issue=8&rft.spage=730&rft.epage=737&rft.pages=730-737&rft.issn=1546-1440&rft.eissn=1558-349X&rft_id=info:doi/10.1016/j.jacr.2023.06.003&rft_dat=%3Cproquest_cross%3E2843035117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843035117&rft_id=info:pmid/37498259&rft_els_id=S154614402300409X&rfr_iscdi=true |