Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup

In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American College of Radiology 2023-08, Vol.20 (8), p.730-737
Hauptverfasser: Sammer, Marla B.K., Akbari, Yasmin S., Barth, Richard A., Blumer, Steven L., Dillman, Jonathan R., Farmakis, Shannon G., Frush, Don P., Gokli, Ami, Halabi, Safwan S., Iyer, Ramesh, Joshi, Aparna, Kwon, Jeannie K., Otero, Hansel J., Sher, Andrew C., Sotardi, Susan T., Taragin, Benjamin H., Towbin, Alexander J., Wald, Christoph
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 737
container_issue 8
container_start_page 730
container_title Journal of the American College of Radiology
container_volume 20
creator Sammer, Marla B.K.
Akbari, Yasmin S.
Barth, Richard A.
Blumer, Steven L.
Dillman, Jonathan R.
Farmakis, Shannon G.
Frush, Don P.
Gokli, Ami
Halabi, Safwan S.
Iyer, Ramesh
Joshi, Aparna
Kwon, Jeannie K.
Otero, Hansel J.
Sher, Andrew C.
Sotardi, Susan T.
Taragin, Benjamin H.
Towbin, Alexander J.
Wald, Christoph
description In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children.
doi_str_mv 10.1016/j.jacr.2023.06.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2843035117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S154614402300409X</els_id><sourcerecordid>2843035117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d2af9f00f9a364c186c012e3b28b94a8b52d31185f62847340f618d7aa06380e3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhiMEoh_wBzggHzmQMP6I4yAuqxUtK1WiqqjKzfI6462XJE5tL1IlfjyJtiBOnGY0et5Xmqco3lCoKFD5YV_tjY0VA8YrkBUAf1ac0rpWJRft9-fLLmRJhYCT4iylPQBrGqVeFie8Ea1idXta_LpNSIIjq5i989abnmzGjH3vdzhaJH4kN6bzoQ-7x49kM0zGZhJGco2dNzl6S65N9jjm9J4YcnfvM86XCSO5iGEg-R7Jan3zD77akLsQf-xiOEyvihfO9AlfP83z4vbi87f1l_Lq6-VmvboqrQDIZceMax2Aaw2XwlIlLVCGfMvUthVGbWvWcUpV7SRTouECnKSqa4wByRUgPy_eHXunGB4OmLIefLLzk2bEcEh6TnHgNaXNjLIjamNIKaLTU_SDiY-agl6s671erOvFugapZ-tz6O1T_2E7YPc38kfzDHw6Ajh_-dNj1Mn6xW_nI9qsu-D_1_8bRrSSKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843035117</pqid></control><display><type>article</type><title>Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sammer, Marla B.K. ; Akbari, Yasmin S. ; Barth, Richard A. ; Blumer, Steven L. ; Dillman, Jonathan R. ; Farmakis, Shannon G. ; Frush, Don P. ; Gokli, Ami ; Halabi, Safwan S. ; Iyer, Ramesh ; Joshi, Aparna ; Kwon, Jeannie K. ; Otero, Hansel J. ; Sher, Andrew C. ; Sotardi, Susan T. ; Taragin, Benjamin H. ; Towbin, Alexander J. ; Wald, Christoph</creator><creatorcontrib>Sammer, Marla B.K. ; Akbari, Yasmin S. ; Barth, Richard A. ; Blumer, Steven L. ; Dillman, Jonathan R. ; Farmakis, Shannon G. ; Frush, Don P. ; Gokli, Ami ; Halabi, Safwan S. ; Iyer, Ramesh ; Joshi, Aparna ; Kwon, Jeannie K. ; Otero, Hansel J. ; Sher, Andrew C. ; Sotardi, Susan T. ; Taragin, Benjamin H. ; Towbin, Alexander J. ; Wald, Christoph</creatorcontrib><description>In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children.</description><identifier>ISSN: 1546-1440</identifier><identifier>EISSN: 1558-349X</identifier><identifier>DOI: 10.1016/j.jacr.2023.06.003</identifier><identifier>PMID: 37498259</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Journal of the American College of Radiology, 2023-08, Vol.20 (8), p.730-737</ispartof><rights>2023 American College of Radiology</rights><rights>Copyright © 2023 American College of Radiology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d2af9f00f9a364c186c012e3b28b94a8b52d31185f62847340f618d7aa06380e3</citedby><cites>FETCH-LOGICAL-c400t-d2af9f00f9a364c186c012e3b28b94a8b52d31185f62847340f618d7aa06380e3</cites><orcidid>0000-0002-0026-0326 ; 0000-0003-1729-5071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S154614402300409X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37498259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sammer, Marla B.K.</creatorcontrib><creatorcontrib>Akbari, Yasmin S.</creatorcontrib><creatorcontrib>Barth, Richard A.</creatorcontrib><creatorcontrib>Blumer, Steven L.</creatorcontrib><creatorcontrib>Dillman, Jonathan R.</creatorcontrib><creatorcontrib>Farmakis, Shannon G.</creatorcontrib><creatorcontrib>Frush, Don P.</creatorcontrib><creatorcontrib>Gokli, Ami</creatorcontrib><creatorcontrib>Halabi, Safwan S.</creatorcontrib><creatorcontrib>Iyer, Ramesh</creatorcontrib><creatorcontrib>Joshi, Aparna</creatorcontrib><creatorcontrib>Kwon, Jeannie K.</creatorcontrib><creatorcontrib>Otero, Hansel J.</creatorcontrib><creatorcontrib>Sher, Andrew C.</creatorcontrib><creatorcontrib>Sotardi, Susan T.</creatorcontrib><creatorcontrib>Taragin, Benjamin H.</creatorcontrib><creatorcontrib>Towbin, Alexander J.</creatorcontrib><creatorcontrib>Wald, Christoph</creatorcontrib><title>Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup</title><title>Journal of the American College of Radiology</title><addtitle>J Am Coll Radiol</addtitle><description>In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children.</description><issn>1546-1440</issn><issn>1558-349X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhiMEoh_wBzggHzmQMP6I4yAuqxUtK1WiqqjKzfI6462XJE5tL1IlfjyJtiBOnGY0et5Xmqco3lCoKFD5YV_tjY0VA8YrkBUAf1ac0rpWJRft9-fLLmRJhYCT4iylPQBrGqVeFie8Ea1idXta_LpNSIIjq5i989abnmzGjH3vdzhaJH4kN6bzoQ-7x49kM0zGZhJGco2dNzl6S65N9jjm9J4YcnfvM86XCSO5iGEg-R7Jan3zD77akLsQf-xiOEyvihfO9AlfP83z4vbi87f1l_Lq6-VmvboqrQDIZceMax2Aaw2XwlIlLVCGfMvUthVGbWvWcUpV7SRTouECnKSqa4wByRUgPy_eHXunGB4OmLIefLLzk2bEcEh6TnHgNaXNjLIjamNIKaLTU_SDiY-agl6s671erOvFugapZ-tz6O1T_2E7YPc38kfzDHw6Ajh_-dNj1Mn6xW_nI9qsu-D_1_8bRrSSKg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Sammer, Marla B.K.</creator><creator>Akbari, Yasmin S.</creator><creator>Barth, Richard A.</creator><creator>Blumer, Steven L.</creator><creator>Dillman, Jonathan R.</creator><creator>Farmakis, Shannon G.</creator><creator>Frush, Don P.</creator><creator>Gokli, Ami</creator><creator>Halabi, Safwan S.</creator><creator>Iyer, Ramesh</creator><creator>Joshi, Aparna</creator><creator>Kwon, Jeannie K.</creator><creator>Otero, Hansel J.</creator><creator>Sher, Andrew C.</creator><creator>Sotardi, Susan T.</creator><creator>Taragin, Benjamin H.</creator><creator>Towbin, Alexander J.</creator><creator>Wald, Christoph</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0026-0326</orcidid><orcidid>https://orcid.org/0000-0003-1729-5071</orcidid></search><sort><creationdate>20230801</creationdate><title>Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup</title><author>Sammer, Marla B.K. ; Akbari, Yasmin S. ; Barth, Richard A. ; Blumer, Steven L. ; Dillman, Jonathan R. ; Farmakis, Shannon G. ; Frush, Don P. ; Gokli, Ami ; Halabi, Safwan S. ; Iyer, Ramesh ; Joshi, Aparna ; Kwon, Jeannie K. ; Otero, Hansel J. ; Sher, Andrew C. ; Sotardi, Susan T. ; Taragin, Benjamin H. ; Towbin, Alexander J. ; Wald, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d2af9f00f9a364c186c012e3b28b94a8b52d31185f62847340f618d7aa06380e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sammer, Marla B.K.</creatorcontrib><creatorcontrib>Akbari, Yasmin S.</creatorcontrib><creatorcontrib>Barth, Richard A.</creatorcontrib><creatorcontrib>Blumer, Steven L.</creatorcontrib><creatorcontrib>Dillman, Jonathan R.</creatorcontrib><creatorcontrib>Farmakis, Shannon G.</creatorcontrib><creatorcontrib>Frush, Don P.</creatorcontrib><creatorcontrib>Gokli, Ami</creatorcontrib><creatorcontrib>Halabi, Safwan S.</creatorcontrib><creatorcontrib>Iyer, Ramesh</creatorcontrib><creatorcontrib>Joshi, Aparna</creatorcontrib><creatorcontrib>Kwon, Jeannie K.</creatorcontrib><creatorcontrib>Otero, Hansel J.</creatorcontrib><creatorcontrib>Sher, Andrew C.</creatorcontrib><creatorcontrib>Sotardi, Susan T.</creatorcontrib><creatorcontrib>Taragin, Benjamin H.</creatorcontrib><creatorcontrib>Towbin, Alexander J.</creatorcontrib><creatorcontrib>Wald, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American College of Radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sammer, Marla B.K.</au><au>Akbari, Yasmin S.</au><au>Barth, Richard A.</au><au>Blumer, Steven L.</au><au>Dillman, Jonathan R.</au><au>Farmakis, Shannon G.</au><au>Frush, Don P.</au><au>Gokli, Ami</au><au>Halabi, Safwan S.</au><au>Iyer, Ramesh</au><au>Joshi, Aparna</au><au>Kwon, Jeannie K.</au><au>Otero, Hansel J.</au><au>Sher, Andrew C.</au><au>Sotardi, Susan T.</au><au>Taragin, Benjamin H.</au><au>Towbin, Alexander J.</au><au>Wald, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup</atitle><jtitle>Journal of the American College of Radiology</jtitle><addtitle>J Am Coll Radiol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>20</volume><issue>8</issue><spage>730</spage><epage>737</epage><pages>730-737</pages><issn>1546-1440</issn><eissn>1558-349X</eissn><abstract>In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37498259</pmid><doi>10.1016/j.jacr.2023.06.003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0026-0326</orcidid><orcidid>https://orcid.org/0000-0003-1729-5071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-1440
ispartof Journal of the American College of Radiology, 2023-08, Vol.20 (8), p.730-737
issn 1546-1440
1558-349X
language eng
recordid cdi_proquest_miscellaneous_2843035117
source Elsevier ScienceDirect Journals Complete
title Use of Artificial Intelligence in Radiology: Impact on Pediatric Patients, a White Paper From the ACR Pediatric AI Workgroup
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Artificial%20Intelligence%20in%20Radiology:%20Impact%20on%20Pediatric%20Patients,%20a%20White%20Paper%20From%20the%20ACR%20Pediatric%20AI%20Workgroup&rft.jtitle=Journal%20of%20the%20American%20College%20of%20Radiology&rft.au=Sammer,%20Marla%20B.K.&rft.date=2023-08-01&rft.volume=20&rft.issue=8&rft.spage=730&rft.epage=737&rft.pages=730-737&rft.issn=1546-1440&rft.eissn=1558-349X&rft_id=info:doi/10.1016/j.jacr.2023.06.003&rft_dat=%3Cproquest_cross%3E2843035117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843035117&rft_id=info:pmid/37498259&rft_els_id=S154614402300409X&rfr_iscdi=true