Analytical model of a semiconductor optical amplifier

The spatial dependence of the material gain is introduced in the model of a semiconductor optical amplifier. Analytical expressions of the profiles of the carrier density, spontaneous emission, and amplified fields are obtained for amplifiers with arbitrary facet reflectivities. The nonuniformity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 1994-01, Vol.12 (1), p.49-54
1. Verfasser: Brosson, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 49
container_title Journal of lightwave technology
container_volume 12
creator Brosson, P.
description The spatial dependence of the material gain is introduced in the model of a semiconductor optical amplifier. Analytical expressions of the profiles of the carrier density, spontaneous emission, and amplified fields are obtained for amplifiers with arbitrary facet reflectivities. The nonuniformity of the carrier density is demonstrated in the case of low facet reflectivities. The model predicts the output saturation power and gain ripple, with good agreement with experimental results in resonant and traveling-wave amplifiers. Very low-gain ripple measured in low facet reflectivities amplifiers is explained by the model. A comparison with the uniform gain model shows that important deviations can occur in the case of low facet reflectivities. It is also shown that with the currently achievable low facet reflectivities, the maximum available gain is limited by spontaneous emission.< >
doi_str_mv 10.1109/50.265734
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28430350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>265734</ieee_id><sourcerecordid>28430350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-a37371004c20fdc4caadd23cdc71ec5ef666867b7672d9838a8b1a0f6c56be1e3</originalsourceid><addsrcrecordid>eNqN0L1LAzEYBvAgCtbq4Op0k-Bw9c13OpbiFxRcdA5p8gYid82ZXIf-91auODs9w_PjGR5CbiksKIXlo4QFU1JzcUZmVErTMkb5OZmB5rw1molLclXrFwAVwugZkaud6w5j8q5r-hywa3JsXFOxTz7vwt6PuTR5mIDrhy7FhOWaXETXVbw55Zx8Pj99rF_bzfvL23q1aT0HM7aOa64pgPAMYvDCOxcC4z54TdFLjEopo_RWK83C0nDjzJY6iMpLtUWKfE7up92h5O891tH2qXrsOrfDvK-WmaVSIOU_oODAJRzhwwR9ybUWjHYoqXflYCnY3wetBDs9eLR3k02I-OdO5Q_HKWq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28430350</pqid></control><display><type>article</type><title>Analytical model of a semiconductor optical amplifier</title><source>IEEE Electronic Library (IEL)</source><creator>Brosson, P.</creator><creatorcontrib>Brosson, P.</creatorcontrib><description>The spatial dependence of the material gain is introduced in the model of a semiconductor optical amplifier. Analytical expressions of the profiles of the carrier density, spontaneous emission, and amplified fields are obtained for amplifiers with arbitrary facet reflectivities. The nonuniformity of the carrier density is demonstrated in the case of low facet reflectivities. The model predicts the output saturation power and gain ripple, with good agreement with experimental results in resonant and traveling-wave amplifiers. Very low-gain ripple measured in low facet reflectivities amplifiers is explained by the model. A comparison with the uniform gain model shows that important deviations can occur in the case of low facet reflectivities. It is also shown that with the currently achievable low facet reflectivities, the maximum available gain is limited by spontaneous emission.&lt; &gt;</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/50.265734</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Charge carrier density ; Optical amplifiers ; Optical materials ; Predictive models ; Reflectivity ; Resonance ; Semiconductor materials ; Semiconductor optical amplifiers ; Spontaneous emission</subject><ispartof>Journal of lightwave technology, 1994-01, Vol.12 (1), p.49-54</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-a37371004c20fdc4caadd23cdc71ec5ef666867b7672d9838a8b1a0f6c56be1e3</citedby><cites>FETCH-LOGICAL-c308t-a37371004c20fdc4caadd23cdc71ec5ef666867b7672d9838a8b1a0f6c56be1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/265734$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/265734$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brosson, P.</creatorcontrib><title>Analytical model of a semiconductor optical amplifier</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>The spatial dependence of the material gain is introduced in the model of a semiconductor optical amplifier. Analytical expressions of the profiles of the carrier density, spontaneous emission, and amplified fields are obtained for amplifiers with arbitrary facet reflectivities. The nonuniformity of the carrier density is demonstrated in the case of low facet reflectivities. The model predicts the output saturation power and gain ripple, with good agreement with experimental results in resonant and traveling-wave amplifiers. Very low-gain ripple measured in low facet reflectivities amplifiers is explained by the model. A comparison with the uniform gain model shows that important deviations can occur in the case of low facet reflectivities. It is also shown that with the currently achievable low facet reflectivities, the maximum available gain is limited by spontaneous emission.&lt; &gt;</description><subject>Analytical models</subject><subject>Charge carrier density</subject><subject>Optical amplifiers</subject><subject>Optical materials</subject><subject>Predictive models</subject><subject>Reflectivity</subject><subject>Resonance</subject><subject>Semiconductor materials</subject><subject>Semiconductor optical amplifiers</subject><subject>Spontaneous emission</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqN0L1LAzEYBvAgCtbq4Op0k-Bw9c13OpbiFxRcdA5p8gYid82ZXIf-91auODs9w_PjGR5CbiksKIXlo4QFU1JzcUZmVErTMkb5OZmB5rw1molLclXrFwAVwugZkaud6w5j8q5r-hywa3JsXFOxTz7vwt6PuTR5mIDrhy7FhOWaXETXVbw55Zx8Pj99rF_bzfvL23q1aT0HM7aOa64pgPAMYvDCOxcC4z54TdFLjEopo_RWK83C0nDjzJY6iMpLtUWKfE7up92h5O891tH2qXrsOrfDvK-WmaVSIOU_oODAJRzhwwR9ybUWjHYoqXflYCnY3wetBDs9eLR3k02I-OdO5Q_HKWq8</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Brosson, P.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>199401</creationdate><title>Analytical model of a semiconductor optical amplifier</title><author>Brosson, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-a37371004c20fdc4caadd23cdc71ec5ef666867b7672d9838a8b1a0f6c56be1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Analytical models</topic><topic>Charge carrier density</topic><topic>Optical amplifiers</topic><topic>Optical materials</topic><topic>Predictive models</topic><topic>Reflectivity</topic><topic>Resonance</topic><topic>Semiconductor materials</topic><topic>Semiconductor optical amplifiers</topic><topic>Spontaneous emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brosson, P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brosson, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical model of a semiconductor optical amplifier</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>1994-01</date><risdate>1994</risdate><volume>12</volume><issue>1</issue><spage>49</spage><epage>54</epage><pages>49-54</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>The spatial dependence of the material gain is introduced in the model of a semiconductor optical amplifier. Analytical expressions of the profiles of the carrier density, spontaneous emission, and amplified fields are obtained for amplifiers with arbitrary facet reflectivities. The nonuniformity of the carrier density is demonstrated in the case of low facet reflectivities. The model predicts the output saturation power and gain ripple, with good agreement with experimental results in resonant and traveling-wave amplifiers. Very low-gain ripple measured in low facet reflectivities amplifiers is explained by the model. A comparison with the uniform gain model shows that important deviations can occur in the case of low facet reflectivities. It is also shown that with the currently achievable low facet reflectivities, the maximum available gain is limited by spontaneous emission.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/50.265734</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 1994-01, Vol.12 (1), p.49-54
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_miscellaneous_28430350
source IEEE Electronic Library (IEL)
subjects Analytical models
Charge carrier density
Optical amplifiers
Optical materials
Predictive models
Reflectivity
Resonance
Semiconductor materials
Semiconductor optical amplifiers
Spontaneous emission
title Analytical model of a semiconductor optical amplifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20model%20of%20a%20semiconductor%20optical%20amplifier&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Brosson,%20P.&rft.date=1994-01&rft.volume=12&rft.issue=1&rft.spage=49&rft.epage=54&rft.pages=49-54&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/50.265734&rft_dat=%3Cproquest_RIE%3E28430350%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28430350&rft_id=info:pmid/&rft_ieee_id=265734&rfr_iscdi=true