Skeletal calcification patterns of batoid, teleost, and mammalian models: Calcified cartilage versus bone matrix

This study compares the skeletal calcification pattern of batoid Raja asterias with the endochondral ossification model of mammalians Homo sapiens and teleost Xiphias gladius. Skeletal mineralization serves to stiffen the mobile elements for locomotion. Histology, histochemistry, heat deproteination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2023-12, Vol.86 (12), p.1568-1582
Hauptverfasser: Pazzaglia, Ugo E, Reguzzoni, Marcella, Milanese, Chiara, Manconi, Renata, Lanteri, Luca, Cubeddu, Tiziana, Zarattini, Guido, Zecca, Piero A, Raspanti, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1582
container_issue 12
container_start_page 1568
container_title Microscopy research and technique
container_volume 86
creator Pazzaglia, Ugo E
Reguzzoni, Marcella
Milanese, Chiara
Manconi, Renata
Lanteri, Luca
Cubeddu, Tiziana
Zarattini, Guido
Zecca, Piero A
Raspanti, Mario
description This study compares the skeletal calcification pattern of batoid Raja asterias with the endochondral ossification model of mammalians Homo sapiens and teleost Xiphias gladius. Skeletal mineralization serves to stiffen the mobile elements for locomotion. Histology, histochemistry, heat deproteination, scanning electron microscopy (SEM)/EDAX analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectrometry (FTIR) have been applied in the study. H. sapiens and X. gladius bone specimens showed similar profiles, R. asterias calcified cartilage diverges for higher water release and more amorphous bioapatite. In endochondral ossification, fetal calcified cartilage is progressively replaced by bone matrix, while R. asterias calcified cartilage remains un-remodeled throughout the life span. Ca and PO concentration in extracellular matrix is suggested to reach the critical salts precipitation point through H O recall from extracellular matrix into both chondroblasts or osteoblasts. Cartilage organic phase layout and incomplete mineralization allow interstitial fluids diffusion, chondrocytes survival, and growth in a calcified tissue lacking of a vascular and canalicular system. HIGHLIGHTS: Comparative physico-chemical characterization (TGA, DTG and DSC) testifies the mass loss due to water release, collagen and carbonate decomposition of the three tested matrices. R. asterias calcified cartilage water content is higher than that of H. sapiens and X. gladius, as shown by the respectively highest dehydration enthalpy values. Lower crystallinity degree of R. asterias calcified cartilage can be related to the higher amount of collagen in amorphous form than in bone matrix. These data can be discussed in terms of the mechanostat theory (Frost, 1966) or by organic/inorganic phase transformation in the course evolution from fin to limbs. Mineral analysis documented different charactersof R. asterias vs H. sapiens and X. gladius calcified matrix.
doi_str_mv 10.1002/jemt.24388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2842454799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2842454799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-f7dfb0966c4b987cc3c967cb10040e6014f5278120fff07ab7fbbad793ec58e13</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7ode_AES8CLL9lrppDsdbzLsh7DgQQVvTZKuSGbTndkkLfrvzTi7e_CUIjz1UFUvIW8YXDCA9sMW53LRCj4Mz8gxAyWb-que7-tONYrBjyNykvMWgLGOiZfkiEuhOKjhmOy-3mHAogO1OljvvNXFx4XudCmYlkyjo0aX6KdzWioZczmnepnorOdZB68XOscJQ_5INwcBTlWVig_6J9JfmPKaqYkL1o6S_O9X5IXTIePrh_eUfL-6_La5aW6_XH_efLptLGdQGicnZ0D1vRVGDdJablUvrakLC8AemHBdKwfWgnMOpDbSGaMnqTjabkDGT8n7g3eX4v2KuYyzzxZD0AvGNY_tIFrRCalURd_9h27jmpY6XaUGpYD3AJU6O1A2xZwTunGX_KzTn5HBuM9h3Ocw_suhwm8flKuZcXpCHw_P_wIg24SR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889903600</pqid></control><display><type>article</type><title>Skeletal calcification patterns of batoid, teleost, and mammalian models: Calcified cartilage versus bone matrix</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pazzaglia, Ugo E ; Reguzzoni, Marcella ; Milanese, Chiara ; Manconi, Renata ; Lanteri, Luca ; Cubeddu, Tiziana ; Zarattini, Guido ; Zecca, Piero A ; Raspanti, Mario</creator><creatorcontrib>Pazzaglia, Ugo E ; Reguzzoni, Marcella ; Milanese, Chiara ; Manconi, Renata ; Lanteri, Luca ; Cubeddu, Tiziana ; Zarattini, Guido ; Zecca, Piero A ; Raspanti, Mario</creatorcontrib><description>This study compares the skeletal calcification pattern of batoid Raja asterias with the endochondral ossification model of mammalians Homo sapiens and teleost Xiphias gladius. Skeletal mineralization serves to stiffen the mobile elements for locomotion. Histology, histochemistry, heat deproteination, scanning electron microscopy (SEM)/EDAX analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectrometry (FTIR) have been applied in the study. H. sapiens and X. gladius bone specimens showed similar profiles, R. asterias calcified cartilage diverges for higher water release and more amorphous bioapatite. In endochondral ossification, fetal calcified cartilage is progressively replaced by bone matrix, while R. asterias calcified cartilage remains un-remodeled throughout the life span. Ca and PO concentration in extracellular matrix is suggested to reach the critical salts precipitation point through H O recall from extracellular matrix into both chondroblasts or osteoblasts. Cartilage organic phase layout and incomplete mineralization allow interstitial fluids diffusion, chondrocytes survival, and growth in a calcified tissue lacking of a vascular and canalicular system. HIGHLIGHTS: Comparative physico-chemical characterization (TGA, DTG and DSC) testifies the mass loss due to water release, collagen and carbonate decomposition of the three tested matrices. R. asterias calcified cartilage water content is higher than that of H. sapiens and X. gladius, as shown by the respectively highest dehydration enthalpy values. Lower crystallinity degree of R. asterias calcified cartilage can be related to the higher amount of collagen in amorphous form than in bone matrix. These data can be discussed in terms of the mechanostat theory (Frost, 1966) or by organic/inorganic phase transformation in the course evolution from fin to limbs. Mineral analysis documented different charactersof R. asterias vs H. sapiens and X. gladius calcified matrix.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.24388</identifier><identifier>PMID: 37493098</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Bone Matrix ; Calcification ; Calcification, Physiologic ; Calcinosis ; Calcium ions ; Calorimetry ; Cartilage ; Chondroblasts ; Chondrocytes ; Collagen ; Collagen - analysis ; Dehydration ; Differential scanning calorimetry ; Endochondral bone ; Enthalpy ; Extracellular matrix ; Fetuses ; Fourier transforms ; Histochemistry ; Histology ; Humans ; Infrared analysis ; Infrared spectroscopy ; Life span ; Locomotion ; Mammals ; Mineralization ; Moisture content ; Ossification ; Phase transitions ; Scanning electron microscopy ; Spectrometry ; Thermogravimetric analysis ; Water - analysis ; Water content</subject><ispartof>Microscopy research and technique, 2023-12, Vol.86 (12), p.1568-1582</ispartof><rights>2023 The Authors. Microscopy Research and Technique published by Wiley Periodicals LLC.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-f7dfb0966c4b987cc3c967cb10040e6014f5278120fff07ab7fbbad793ec58e13</cites><orcidid>0000-0001-6322-1845 ; 0000-0001-7522-8200 ; 0000-0001-9646-4958 ; 0000-0002-3344-2388 ; 0000-0002-3763-6657 ; 0000-0002-6956-0677 ; 0000-0002-7619-8493 ; 0000-0002-0161-2434 ; 0000-0003-3738-6632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37493098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pazzaglia, Ugo E</creatorcontrib><creatorcontrib>Reguzzoni, Marcella</creatorcontrib><creatorcontrib>Milanese, Chiara</creatorcontrib><creatorcontrib>Manconi, Renata</creatorcontrib><creatorcontrib>Lanteri, Luca</creatorcontrib><creatorcontrib>Cubeddu, Tiziana</creatorcontrib><creatorcontrib>Zarattini, Guido</creatorcontrib><creatorcontrib>Zecca, Piero A</creatorcontrib><creatorcontrib>Raspanti, Mario</creatorcontrib><title>Skeletal calcification patterns of batoid, teleost, and mammalian models: Calcified cartilage versus bone matrix</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>This study compares the skeletal calcification pattern of batoid Raja asterias with the endochondral ossification model of mammalians Homo sapiens and teleost Xiphias gladius. Skeletal mineralization serves to stiffen the mobile elements for locomotion. Histology, histochemistry, heat deproteination, scanning electron microscopy (SEM)/EDAX analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectrometry (FTIR) have been applied in the study. H. sapiens and X. gladius bone specimens showed similar profiles, R. asterias calcified cartilage diverges for higher water release and more amorphous bioapatite. In endochondral ossification, fetal calcified cartilage is progressively replaced by bone matrix, while R. asterias calcified cartilage remains un-remodeled throughout the life span. Ca and PO concentration in extracellular matrix is suggested to reach the critical salts precipitation point through H O recall from extracellular matrix into both chondroblasts or osteoblasts. Cartilage organic phase layout and incomplete mineralization allow interstitial fluids diffusion, chondrocytes survival, and growth in a calcified tissue lacking of a vascular and canalicular system. HIGHLIGHTS: Comparative physico-chemical characterization (TGA, DTG and DSC) testifies the mass loss due to water release, collagen and carbonate decomposition of the three tested matrices. R. asterias calcified cartilage water content is higher than that of H. sapiens and X. gladius, as shown by the respectively highest dehydration enthalpy values. Lower crystallinity degree of R. asterias calcified cartilage can be related to the higher amount of collagen in amorphous form than in bone matrix. These data can be discussed in terms of the mechanostat theory (Frost, 1966) or by organic/inorganic phase transformation in the course evolution from fin to limbs. Mineral analysis documented different charactersof R. asterias vs H. sapiens and X. gladius calcified matrix.</description><subject>Animals</subject><subject>Bone Matrix</subject><subject>Calcification</subject><subject>Calcification, Physiologic</subject><subject>Calcinosis</subject><subject>Calcium ions</subject><subject>Calorimetry</subject><subject>Cartilage</subject><subject>Chondroblasts</subject><subject>Chondrocytes</subject><subject>Collagen</subject><subject>Collagen - analysis</subject><subject>Dehydration</subject><subject>Differential scanning calorimetry</subject><subject>Endochondral bone</subject><subject>Enthalpy</subject><subject>Extracellular matrix</subject><subject>Fetuses</subject><subject>Fourier transforms</subject><subject>Histochemistry</subject><subject>Histology</subject><subject>Humans</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Life span</subject><subject>Locomotion</subject><subject>Mammals</subject><subject>Mineralization</subject><subject>Moisture content</subject><subject>Ossification</subject><subject>Phase transitions</subject><subject>Scanning electron microscopy</subject><subject>Spectrometry</subject><subject>Thermogravimetric analysis</subject><subject>Water - analysis</subject><subject>Water content</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2LFDEQhoMo7ode_AES8CLL9lrppDsdbzLsh7DgQQVvTZKuSGbTndkkLfrvzTi7e_CUIjz1UFUvIW8YXDCA9sMW53LRCj4Mz8gxAyWb-que7-tONYrBjyNykvMWgLGOiZfkiEuhOKjhmOy-3mHAogO1OljvvNXFx4XudCmYlkyjo0aX6KdzWioZczmnepnorOdZB68XOscJQ_5INwcBTlWVig_6J9JfmPKaqYkL1o6S_O9X5IXTIePrh_eUfL-6_La5aW6_XH_efLptLGdQGicnZ0D1vRVGDdJablUvrakLC8AemHBdKwfWgnMOpDbSGaMnqTjabkDGT8n7g3eX4v2KuYyzzxZD0AvGNY_tIFrRCalURd_9h27jmpY6XaUGpYD3AJU6O1A2xZwTunGX_KzTn5HBuM9h3Ocw_suhwm8flKuZcXpCHw_P_wIg24SR</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Pazzaglia, Ugo E</creator><creator>Reguzzoni, Marcella</creator><creator>Milanese, Chiara</creator><creator>Manconi, Renata</creator><creator>Lanteri, Luca</creator><creator>Cubeddu, Tiziana</creator><creator>Zarattini, Guido</creator><creator>Zecca, Piero A</creator><creator>Raspanti, Mario</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6322-1845</orcidid><orcidid>https://orcid.org/0000-0001-7522-8200</orcidid><orcidid>https://orcid.org/0000-0001-9646-4958</orcidid><orcidid>https://orcid.org/0000-0002-3344-2388</orcidid><orcidid>https://orcid.org/0000-0002-3763-6657</orcidid><orcidid>https://orcid.org/0000-0002-6956-0677</orcidid><orcidid>https://orcid.org/0000-0002-7619-8493</orcidid><orcidid>https://orcid.org/0000-0002-0161-2434</orcidid><orcidid>https://orcid.org/0000-0003-3738-6632</orcidid></search><sort><creationdate>202312</creationdate><title>Skeletal calcification patterns of batoid, teleost, and mammalian models: Calcified cartilage versus bone matrix</title><author>Pazzaglia, Ugo E ; Reguzzoni, Marcella ; Milanese, Chiara ; Manconi, Renata ; Lanteri, Luca ; Cubeddu, Tiziana ; Zarattini, Guido ; Zecca, Piero A ; Raspanti, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-f7dfb0966c4b987cc3c967cb10040e6014f5278120fff07ab7fbbad793ec58e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Bone Matrix</topic><topic>Calcification</topic><topic>Calcification, Physiologic</topic><topic>Calcinosis</topic><topic>Calcium ions</topic><topic>Calorimetry</topic><topic>Cartilage</topic><topic>Chondroblasts</topic><topic>Chondrocytes</topic><topic>Collagen</topic><topic>Collagen - analysis</topic><topic>Dehydration</topic><topic>Differential scanning calorimetry</topic><topic>Endochondral bone</topic><topic>Enthalpy</topic><topic>Extracellular matrix</topic><topic>Fetuses</topic><topic>Fourier transforms</topic><topic>Histochemistry</topic><topic>Histology</topic><topic>Humans</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Life span</topic><topic>Locomotion</topic><topic>Mammals</topic><topic>Mineralization</topic><topic>Moisture content</topic><topic>Ossification</topic><topic>Phase transitions</topic><topic>Scanning electron microscopy</topic><topic>Spectrometry</topic><topic>Thermogravimetric analysis</topic><topic>Water - analysis</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pazzaglia, Ugo E</creatorcontrib><creatorcontrib>Reguzzoni, Marcella</creatorcontrib><creatorcontrib>Milanese, Chiara</creatorcontrib><creatorcontrib>Manconi, Renata</creatorcontrib><creatorcontrib>Lanteri, Luca</creatorcontrib><creatorcontrib>Cubeddu, Tiziana</creatorcontrib><creatorcontrib>Zarattini, Guido</creatorcontrib><creatorcontrib>Zecca, Piero A</creatorcontrib><creatorcontrib>Raspanti, Mario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pazzaglia, Ugo E</au><au>Reguzzoni, Marcella</au><au>Milanese, Chiara</au><au>Manconi, Renata</au><au>Lanteri, Luca</au><au>Cubeddu, Tiziana</au><au>Zarattini, Guido</au><au>Zecca, Piero A</au><au>Raspanti, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skeletal calcification patterns of batoid, teleost, and mammalian models: Calcified cartilage versus bone matrix</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2023-12</date><risdate>2023</risdate><volume>86</volume><issue>12</issue><spage>1568</spage><epage>1582</epage><pages>1568-1582</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>This study compares the skeletal calcification pattern of batoid Raja asterias with the endochondral ossification model of mammalians Homo sapiens and teleost Xiphias gladius. Skeletal mineralization serves to stiffen the mobile elements for locomotion. Histology, histochemistry, heat deproteination, scanning electron microscopy (SEM)/EDAX analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectrometry (FTIR) have been applied in the study. H. sapiens and X. gladius bone specimens showed similar profiles, R. asterias calcified cartilage diverges for higher water release and more amorphous bioapatite. In endochondral ossification, fetal calcified cartilage is progressively replaced by bone matrix, while R. asterias calcified cartilage remains un-remodeled throughout the life span. Ca and PO concentration in extracellular matrix is suggested to reach the critical salts precipitation point through H O recall from extracellular matrix into both chondroblasts or osteoblasts. Cartilage organic phase layout and incomplete mineralization allow interstitial fluids diffusion, chondrocytes survival, and growth in a calcified tissue lacking of a vascular and canalicular system. HIGHLIGHTS: Comparative physico-chemical characterization (TGA, DTG and DSC) testifies the mass loss due to water release, collagen and carbonate decomposition of the three tested matrices. R. asterias calcified cartilage water content is higher than that of H. sapiens and X. gladius, as shown by the respectively highest dehydration enthalpy values. Lower crystallinity degree of R. asterias calcified cartilage can be related to the higher amount of collagen in amorphous form than in bone matrix. These data can be discussed in terms of the mechanostat theory (Frost, 1966) or by organic/inorganic phase transformation in the course evolution from fin to limbs. Mineral analysis documented different charactersof R. asterias vs H. sapiens and X. gladius calcified matrix.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37493098</pmid><doi>10.1002/jemt.24388</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6322-1845</orcidid><orcidid>https://orcid.org/0000-0001-7522-8200</orcidid><orcidid>https://orcid.org/0000-0001-9646-4958</orcidid><orcidid>https://orcid.org/0000-0002-3344-2388</orcidid><orcidid>https://orcid.org/0000-0002-3763-6657</orcidid><orcidid>https://orcid.org/0000-0002-6956-0677</orcidid><orcidid>https://orcid.org/0000-0002-7619-8493</orcidid><orcidid>https://orcid.org/0000-0002-0161-2434</orcidid><orcidid>https://orcid.org/0000-0003-3738-6632</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2023-12, Vol.86 (12), p.1568-1582
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_miscellaneous_2842454799
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Bone Matrix
Calcification
Calcification, Physiologic
Calcinosis
Calcium ions
Calorimetry
Cartilage
Chondroblasts
Chondrocytes
Collagen
Collagen - analysis
Dehydration
Differential scanning calorimetry
Endochondral bone
Enthalpy
Extracellular matrix
Fetuses
Fourier transforms
Histochemistry
Histology
Humans
Infrared analysis
Infrared spectroscopy
Life span
Locomotion
Mammals
Mineralization
Moisture content
Ossification
Phase transitions
Scanning electron microscopy
Spectrometry
Thermogravimetric analysis
Water - analysis
Water content
title Skeletal calcification patterns of batoid, teleost, and mammalian models: Calcified cartilage versus bone matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skeletal%20calcification%20patterns%20of%20batoid,%20teleost,%20and%20mammalian%20models:%20Calcified%20cartilage%20versus%20bone%20matrix&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Pazzaglia,%20Ugo%20E&rft.date=2023-12&rft.volume=86&rft.issue=12&rft.spage=1568&rft.epage=1582&rft.pages=1568-1582&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.24388&rft_dat=%3Cproquest_cross%3E2842454799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889903600&rft_id=info:pmid/37493098&rfr_iscdi=true